
Central Avenue-Metro Blue Line Corridor TOD Implementation Project Mobility Study

THE MARYLAND-NATIONAL CAPITAL PARK AND PLANNING COMMISSION PRINCE GEORGE'S COUNTY PLANNING DEPARTMENT

www.pgplanning.org/pgco

Abstract

Title:	Central Avenue-Metro Blue Line Corridor TOD Implementation Project Mobility Study
Author:	The Maryland-National Capital Park and Planning Commission
Subject:	Project Mobility Study
Date:	May 2014
Source of Copies:	The Maryland-National Capital Park and Planning Commission 14741 Governor Oden Bowie Drive Upper Marlboro, MD 20772
Series Number:	439132306
Number of Pages:	349
Abstract:	Phase 3 of the Central Avenue Transit-Oriented Development (TOD) Mobility Study was initiated in order to investigate needs along the corridor and prepare guidance that would assist the Prince George's County Planning Department and The Maryland-National Capital Park and Planning Commission (M-NCPPC) with implementing the approved Subregion 4 Sector Plan. The effort included an analysis of the existing transportation network including roadways, pedestrian, bicycle, and transit facilities; refinement of feasible transportation solutions; review of existing county design guidelines and policies; and tailoring of broad "Complete Streets" policies to specifically implement concepts in the study area.

Central Avenue-Metro Blue Line Corridor TOD Implementation Project Mobility Study

May 2014

Table of Contents

EXECUTIVE SUMMARY	1
Report Organization	
PROJECT OVERVIEW	7
Project Scope Study Area Future Vision for Central Avenue	
PREVIOUS PLANS & PUBLIC ENGAGEMENT	
Connection to Previous Plans and Existing Policies Subregion 4 Master Plan COUNTY MASTER PLAN OF TRANSPORTATION CENTRAL AVENUE TOD MOBILITY STUDY PHASE 1 AND PHASE 2 Public Involvement Process.	
EXISTING CONDITIONS	19
Land Use and Demographics Existing Market Conditions RESIDENTIAL MARKET ANALYSIS FINDINGS RETAIL MARKET SUMMARY FINDINGS OFFICE MARKET Connectivity and Urban Form. Overview of Transportation Facilities CENTRAL AVENUE CROSS-SECTION PEDESTRIAN FACILITIES BICYCLE FACILITIES BICYCLE FACILITIES TRANSIT SERVICE AND ACCESS TRAFFIC OPERATIONS Safety Analysis DESCRIPTIVE CRASH STATISTICS CONTRIBUTING AND MITIGATION FACTORS Existing Conditions Conclusions and Recommendations LAND USE AND URBAN FORM PEDESTRIAN FACIL THES	26 26 27 27 27 30 30 31 34 34 36 39 42 42 42 42 42 45 45
PEDESTRIAN FACILITIES BICYCLE FACILITIES TRANSIT TRAFFIC SAFETY	46 46 47 47
DESIGN AND POLICY REVIEW	
Transit-Oriented Development Zones TRANSIT DISTRICT AND DEVELOPMENT DISTRICT OVERLAY ZONES Complete Streets Policies APPLICATION AND EXCEPTIONS PERFORMANCE MEASUREMENT AND IMPLEMENTATION A dequate Public Exceptions Provide Provi	51 55 56 57
Adequate Public Facilities Requirements ADEQUATE PUBLIC PEDESTRIAN AND BIKEWAY FACILITIES REQUIREMENT Network Connectivity	61

Parking Requirements	
Midblock Crossings	
Sidewalk Funding and Maintenance	
Policy Recommendations	
COMPLETE STREETS	
ADEQUATE PUBLIC FACILITIES REQUIREMENTS	
PARKING REQUIREMENTS	
MIDBLOCK CROSSINGS	
SIDEWALK FUNDING AND MAINTENANCE	65
COMPLETE STREETS STRATEGIES	
Purpose	
Complete Street Typology & Typical Sections	
Trail Typology	
Complete Network Recommendations	
Complete Street Design Treatments	
Complete Street Checklist	
*	
FUTURE CONDITIONS	
Background	
Applying the 4-Step Model	
TRIP GENERATION	
TRIP DISTRIBUTION	
MODE SPLIT	
TRIP ASSIGNMENT	
NO-BUILD CONCLUSIONS Build Scenario #1: Central Avenue Road Diet Results	
ROAD DIET CONCLUSIONS	
Build Scenario #2: Morgan Blvd TOD	
MORGAN BOULEVARD CONCLUSIONS	
Build Scenario #3: Largo Town Center Results	
LARGO TOWN CENTER CONCLUSIONS	
IMPLEMENTATION	
Short-Term Projects	127
Long-Term Projects	

List of Figures

FIGURE 1. STUDY AREA	9
FIGURE 2. LAND USE & POINTS OF INTEREST	20
FIGURE 3. POPULATION DENSITY	21
FIGURE 4. YOUTH (UNDER 18) POPULATION DENSITY	23
FIGURE 5. SENIOR (OVER 65) POPULATION DENSITY	24
FIGURE 6. EMPLOYMENT DENSITY	25
FIGURE 7. POTENTIAL WALKABLE AREA	28
FIGURE 8. EXISTING NETWORK WALKABILITY	29

FIGURE 9. CENTRAL AVENUE TYPICAL CROSS SECTIONS
FIGURE 10. PEDESTRIAN AND BICYCLE FACILITIES
FIGURE 11. PEDESTRIAN LEVEL OF SERVICE
FIGURE 12. BICYCLE LEVEL OF SERVICE
FIGURE 13. EXISTING TRANSIT FACILITIES
FIGURE 14. TRANSIT LEVEL OF SERVICE
FIGURE 15. STREET CLASSIFICATION
FIGURE 16. INTERSECTION OPERATIONS AND LINK LEVEL OF SERVICE
FIGURE 17. CRASH DENSITIES ALONG CENTRAL AVENUE
FIGURE 18. TRANSIT AND DEVELOPMENT DISTRICT OVERLAY ZONES
FIGURE 19. CENTERS AND CORRIDORS
FIGURE 20. PROPOSED SITE PLAN REVIEW PROCESS FOR CENTERS
FIGURE 21. PROPORTIONATE SHARE COST ESTIMATION PROCESS
FIGURE 22. TYPICAL NEIGHBORHOOD GREENWAY CROSS SECTION71
FIGURE 23. TYPICAL NEIGHBORHOOD COMMERCIAL CROSS SECTION
FIGURE 24. TYPICAL AVENUE CROSS SECTION
FIGURE 25. TYPICAL INDUSTRIAL-COMMERCIAL STREET CROSS SECTION
FIGURE 26. TYPICAL NEIGHBORHOOD BOULEVARD CROSS SECTION
FIGURE 27. TYPICAL REGIONAL BOULEVARD CROSS SECTION
FIGURE 28. RECOMMENDED STREET TYPES AND FUNCTIONAL CHARACTERISTICS
FIGURE 29. PROPOSED FUTURE NETWORK
FIGURE 30. 4-STEP MODEL
FIGURE 31. NO-BUILD LANE CONFIGURATION
FIGURE 32. NO-BUILD OPERATIONAL RESULTS – A.M. PEAK HOUR
FIGURE 33. NO-BUILD OPERATIONAL RESULTS – P.M. PEAK HOUR
FIGURE 34. ROAD DIET LANE CONFIGURATIONS
FIGURE 35. ROAD DIET HCM RESULTS – A.M
Figure 36. Road Diet HCM Results – P.M. Peak
Figure 37. AECOM Morgan Boulevard Development Scenario: Mixed Use Concept 'A' Alternative
FIGURE 38. NO-BUILD AND MORGAN BOULEVARD TOD SCENARIO-LANE CONFIGURATIONS
FIGURE 39. NO-BUILD AND MORGAN BOULEVARD TOD SCENARIO – A.M. PEAK HOUR
Figure 40. No-Build and Morgan Boulevard TOD Scenario – P.M. Operations
FIGURE 41. NO-BUILD AND LARGO TOWN CENTER SCENARIO-LAND CONFIGURATIONS
FIGURE 42. NO-BUILD AND LARGO TOWN CENTER SCENARIO – A.M. OPERATIONS
Figure 43. No-Build and Largo Town Center Scenario – P.M. Operations
FIGURE 44. SHORT TERM PROJECTS

List of Tables

TABLE 1. POTENTIAL AND EXISTING NETWORK WALKABILITY
TABLE 2. DEVELOPMENT INTENSITY TARGETS IN CENTERS 52
TABLE 3. EVALUATION OF COMPLETE STREETS POLICY ELEMENTS 56
TABLE 4. ELEMENTS FOR INCLUSION IN TRANSPORTATION SITE PLAN REVIEW AND IMPACT STUDIES 60
TABLE 5. OVERVIEW OF COMPLETE STREET DESIGN TREATMENTS 80
TABLE 6. HOUSEHOLD AND EMPLOYMENT DATA
TABLE 8. BUILD SCENARIO #1: ROAD DIET TRIP GENERATION MODIFICATIONS
TABLE 9. BUILD SCENARIO #2: MORGAN BOULEVARD TOD TRIP GENERATION
TABLE 10 BUILD SCENARIO #2: MORGAN BOULEVARD TOD MODE SPLIT REDUCTIONS
TABLE 11. COMPARISON BETWEEN 2011 EXISTING CONDITIONS AND 2035 NO-BUILD RESULTS–A.M. PEAK
TABLE 12. COMPARISON BETWEEN 2011 EXISTING CONDITIONS AND 2035 NO-BUILD RESULTS–P.M. PEAK
TABLE 13. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 ROAD DIET RESULTS-A.M. PEAK
TABLE 14. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 ROAD DIET RESULTS–P.M. PEAK109
TABLE 15. COMPARISON OF NO-BUILD AND MORGAN BOULEVARD TOD SOUTHBOUND APPROACH VOLUMES, 2035
TABLE 16. COMPARISON BETWEEN 2035 NO-BUILD AND2035 LARGO TOWN CENTER RESULTS-A.M. PEAK121
TABLE 17. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 LARGO TOWN CENTER–P.M. PEAK
TABLE 18. SHORT-TERM PROJECT NEXT STEPS 128
TABLE 19. LONG-TERM IMPLEMENTATION STRATEGIES AND AGENCY RESPONSIBILITIES

Appendices

Appendix 1. Public Involvement Summary	144
Appendix 2. Policy and Standards Review	176
Appendix 3. Transportation Modeling Methodology and NCHRP 225 Results	182
Appendix 4. "No Build" Traffic Analysis and Queuing Reports	204
Appendix 5. Build Scenario #1 Traffic Analysis and Queuing Reports	276
Appendix 6. Build Scenario #2 Traffic Analysis and Queuing Reports	. 298
Appendix 7. Build Scenario #3 Traffic Analysis and Queuing Reports	322
Appendix 8. Traffic Analysis for Davey Street Road Diet	340
Appendix 9. Costing Details for Short-Term	346

Section 1 Executive Summary

May 2014

EXECUTIVE SUMMARY

The Central Avenue (MD 214) corridor in Prince George's County has the potential to become a center of livable neighborhoods, retail districts, and employment zones. The adopted Subregion 4 Master Plan and Sectional Map Amendment (the Subregion 4 Sector Plan) envisions that the corridor's high level of regional connectivity, particularly with its four Blue Line Metrorail stations, can help to bring new economic development, retail, and housing investment. This Corridor TOD Implementation Project looks at Central Avenue and the study area's streets, transit infrastructure, and open space as the assets on which to build a more flexible transportation framework that can support the land use and development changes envisioned. The study tests proposed land use and Complete Streets concepts on future traffic conditions. It investigates current criteria, regulatory guidance, and funding opportunities, and then proposes a series of actions that will help to bring about more affordable, comfortable, convenient, connected, and healthy transportation network. It identifies critical leadership and support roles of partner transportation agencies to fund proposed improvements, amend operating procedures, and fine-tune regulating guidance to bring about the envisioned change.

Central Avenue is the major road focus of this study. As a vital regional arterial, it provides a critical link for travel between the east side of downtown Washington, D.C. and Anacostia, identified as East Capital Street in Washington, D.C, into Prince George's County, where it connects to FedEx Field, the Capital Beltway (I495/I95) and ultimately to Anne Arundel County. The study area, running between the District of Columbia/Prince George's County, Maryland boundary at Southern Avenue east to I-495, has been widened over the years to reflect

An **arterial** is a high-capacity, urban road designed to carry traffic through an area as efficiently as possible.

this important traffic function. Central Avenue provides six general traffic lanes and has separated space for left turning vehicles at its major intersections. Sidewalks exist along much of the corridor but are narrow, without separation from traffic lanes, and with little or no landscaping. Opportunities to safely cross the street on foot are few. Neighbors feel that access from their homes onto the highway at unsignalized intersecting streets is unsafe.

The disconnected street system, characteristic of post-1950 suburban development patterns, requires that the majority of trips made by residents include travel on Central Avenue. The area's lack of connectivity and few parallel routes adds considerable local traffic to that which passes through the area on its way to and from the District of Columbia, the Beltway, and points beyond.

The Washington Metropolitan Area Transit Authority's (WMATA) Blue Line Metrorail service began running parallel to Central Avenue in recent years, introducing new regional connectivity options for residents. With the exception of station access from the main roads when the Blue Line opened for service at the Capitol Heights and Addison Road stations in 1980, very little in the road network changed. Morgan Boulevard and Largo stations, which opened in 2004, were situated away from Central Avenue along county collector roads. Adjacent land use did not adequately consider walking access to and from stations and included large parking areas that invited car commuting to these suburban stations.

The approved Subregion 4 Master Plan envisions a more diverse mix of land uses and greater densities at Metro station locations along the Central Avenue corridor. It envisions a more walkable place; comfortable, convenient and affordable to residents of all ages. The Master Plan of Transportation prioritizes "Complete Streets" in its policy guidance. These plans are combined in this document to help identify ways Central Avenue and its surrounding road network can change

to better serve the future travel and livability of the corridor. Creating a more connected "complete network," combined with land use and density change, will offer more route options, shorten trip lengths, and permit more trips to be made on foot or bicycle to daily destinations.

This document creates a decision-making framework and a set of priority actions that can build the places described in the sector plan for Central Avenue. As one of the county's earliest Complete Streets initiatives, the study provides a pilot analysis for broader application countywide. Changes in decision-making criteria and processes have been proposed and will need to be adopted and adapted over time to successfully create the transit-serviceable communities that recent investment in Metrorail has made possible. Suggested changes in policy, regulations, and program are discussed in this report and include a focus on the following areas:

- Reducing parking requirements for development
- Creating a transit-oriented development review checklist
- Establishing a mid-block crossing policy
- Improving street lighting
- Requiring multimodal connections in new development
- Requiring walkable block lengths
- Implementing new legislation requiring developer contributions to pedestrian and bicycle connections
- Requiring sidewalks on both sides of all new streets in TOD and urban areas
- Typing and designing new streets according to Complete Streets principles

Agency decision-makers with site plan and traffic impact study review responsibility in the Prince George's County Department of Public Works and Transportation (DPW&T); traffic engineers from the Maryland State Highway Administration (SHA); and bus planners from WMATA, will need to help advance the recommendations of this plan. They, and other agency colleagues, generously provided time to the consultant team and project management staff to meet individually and collectively to help bring ideas and identify resources on behalf of their agencies. These resources included funding, technical guidance, and administrative processes.

Recommendations include short-term projects and planning for immediate action initiated by the Sabra Wang/Toole Design Group collaboration during Phases 1 and 2 of this study. The work of this Phase 3 effort built upon Phase 1 and 2 and created an existing conditions analysis. Phase 3 investigated the long term needs and potential opportunities of proposed land use and transportation concepts. Land use, density and site location prepared under separate contract by AECOM was used to update the county's traffic model results for the Phase 3 traffic micro simulation and street connectivity planning.

Report Organization

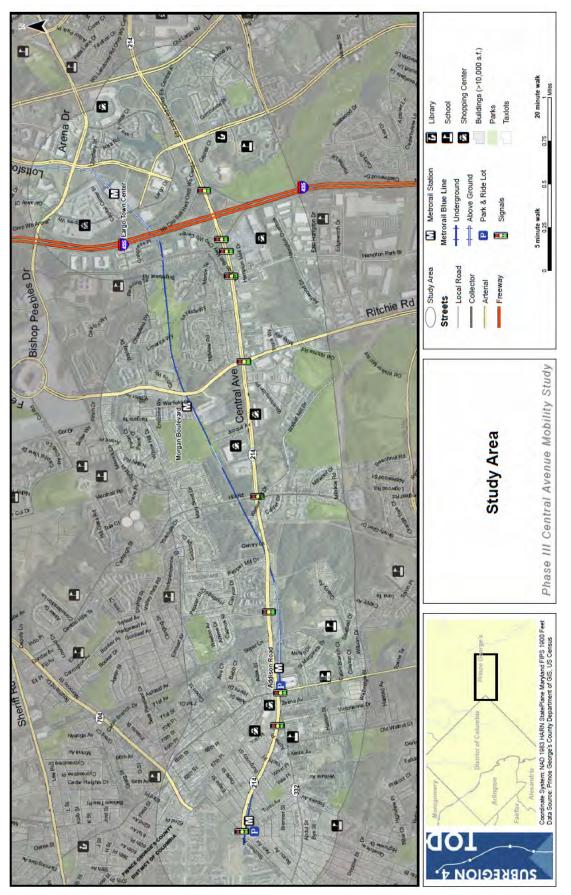
The chapters of this report are organized according to the topic areas below. They present and summarize the results of the Phase 3 analysis conducted for the Central Avenue TOD Mobility Study area and discuss recommendations for action by the identified agency or multi-agency collaboration.

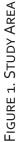
- *1. Previous Planning*: Presents a general overview of the corridor study area, previous planning work conducted for the area, and the process used to develop the Phase 3 Central Avenue TOD Mobility Study.
- 2. *Existing Conditions*: Summary of existing demographics, land use patterns, market conditions, multimodal transportation facilities, operations, and safety in the study area.
- 3. *Design and Policy Review*: Recommends changes to existing transportation, land use, and development review policies and design standards to better support Complete Streets and TOD.
- 4. *Complete Streets Strategies*: Presents a new street type, standard cross sections, and network improvements to enhance multimodal safety and access in the study area and lay the groundwork for a future Transportation Network Functional Overlay.
- 5. *Future Conditions*: Evaluates transportation conditions in 2035 and the feasibility of alternative improvement strategies such as reallocating roadway space on Central Avenue.
- 6. Implementation: Identifies short- and long-term projects to begin implementing Complete Streets and TOD.

Section 2 Project Overview

PROJECT OVERVIEW

Project Scope


Phase 3 of the Central Avenue Transit-Oriented Development (TOD) Mobility Study was initiated in order to investigate needs along the corridor and prepare guidance that would assist the Prince George's County Planning Department and The Maryland-National Capital Park and Planning Commission (M-NCPPC) with implementing the approved Subregion 4 Sector Plan. The effort included an analysis of the existing transportation network including roadways, pedestrian, bicycle, and transit facilities; refinement of feasible transportation solutions; review of existing county design guidelines and policies; and tailoring of broad "Complete Streets" policies to specifically implement concepts in the study area. These recommendations are structured to support the overarching vision for the study area and the following guiding principles:


- Complete streets and networks to support Complete Communities. Complete streets are designed to ensure that all users are safely, comfortably, and adequately accommodated along roadways. Streets should be treated as public space available for use by pedestrians and cyclists in addition to vehicles. Complete networks also provide direct connections between destinations for pedestrians and cyclists, either through street extensions or an integrated trails network. Complete communities expand on this principle further and provide strong connections between the transportation network and surrounding land uses. Within Prince George's County, every project should contribute to a complete community that supports social, economic, and personal health, mobility, choice, and neighborhood vitality. Convenient and comfortable transit access should be implemented into all new projects, and a greater emphasis should be placed on pedestrians when street improvements are made.
- **Livability**. Ultimately, the vision for the project is to increase livability among the neighborhoods and communities on and around Central Avenue. This vision requires a progressive, integrative, and well-planned relationship between transportation and public health, housing, cultural resources, and the natural environment. Implementing a mixed-use land development plan supported by a broad range of transportation options will increase destinations that meet daily needs and would increase livability in the area.
- Offer a range of safe, comfortable, affordable, and convenient transportation options. The role of a multimodal network is to provide reliable, connected transportation options that are accessible to all residents. Complete network improvements could bring the entire study area within a 1 mile walk, approximately 20 minutes, from a Metrorail station. Bicycle connections to Metrorail stations, local destinations, and "low stress" bicycle facilities, such as neighborhood greenways, could make cycling more accessible and attractive as a transportation option. A collector network–a series of low- to moderate-capacity roads that move traffic from local streets to arterial roads–would manage local trips and alleviate traffic from Central Avenue.
- Leverage rail station assets to advance livability through economic development and private sector investment. The land use, complete street/network, and policy recommendations developed through this process can support the addition of residents, businesses, and employment on the corridor in more walkable,

bikable, transit-oriented patterns. As these areas develop, the policies developed and adopted will help guide the implementation of physical improvements to further the goals of Prince Georges County and the residents living along Central Avenue. Due to its proximity to transit, station area sites can bring new jobs to the corridor without adding the levels of traffic that more suburban locations generate. Redevelopment of the Morgan Boulevard site can help to build comfortable and safe connections between the station and nearby areas.

Study Area

The corridor is approximately four miles long and includes properties within one-half mile of Central Avenue and the four Metro Blue Line stations (Figure 1). From west to east, the Metro stations within the study corridor are: Capitol Heights, Addison Road-Seat Pleasant, Morgan Boulevard, and Largo Town Center. Largo Town Center, the final stop on the Blue Line, is situated just east of the Capital Beltway. FedEx Field, home of the Washington Redskins National Football League team, is located approximately one mile north of the Morgan Boulevard Metro station. The land within the Central Avenue corridor is under the purview of several jurisdictions, including Prince George's County, the City of Seat Pleasant, and the Town of Capitol Heights. Central Avenue/East Capitol Street Extended (MD 214) is a state road, maintained by the Maryland State Highway Administration (SHA).

Future Vision for Central Avenue

Consider the Central Avenue corridor 25 years into the future. Due to the introduction of Complete Streets policies there are many more intersecting streets and trail connections that are inviting to pedestrians and bicyclists. Less-experienced bicyclists use neighborhood greenways because they are comfortable and away from the faster traffic on Central Avenue. Younger residents travel to and from school, to area parks, and to visit friends on foot and by bike on sidewalks, in bike lanes, and along trails. Older residents enjoy trail connections for healthy recreation as well as transportation. Fewer travel lanes on Central Avenue, four instead of six, do not substantially increase motorists' travel time because there are more points of access to the road, intersections are managed with shorter cycle lengths, and speeds along the road are more consistent. More people are walking, biking, and using transit. The behavior of motorists sharing Central Avenue with bicyclists and pedestrians, each in their own dedicated space, creates a safer environment for all users. In short, Central Avenue functions more as an urban boulevard rather than an arterial roadway.

New mixed-use and transit-oriented places replace surface parking lots around Metro stations. Residential and retail development is oriented towards Central Avenue to take advantage of the increase in pedestrian activity and visibility. New residents and office workers support more retail business. Development has added employment and shopping options to existing neighborhoods, and it is all thanks to Prince Georges County's thoughtful, community-oriented approach to private investment.

Improvement in the business and economic outlook, combined with a greater number of choices of housing types available for a range of markets, helps older residents age in the communities they know and younger residents find housing in the places where they have grown up. Deep connections to the place that Central Avenue has become is evident from the physical appearance of the area, as the long-time residents of Seat Pleasant, Capital Heights, Morgan Boulevard, and Largo have engaged over the years to ensure that change brings about what is fundamentally important to community life. More work, school, and shopping trips are done locally, which helps to strengthen relationships between residents, area businesses, and neighborhood civic institutions. The positive and forward-thinking improvements in the transportation network, land use changes, and community friendly planning policies encourage growth and investment by government and transit agency partners, as well as the private sector.

The future vision for Central Avenue includes improved access to transit, comfortable walking and biking facilities, and improved crossings of Central Avenue.

Section 3 Previous Plans & Public Engagement

PREVIOUS PLANS & PUBLIC ENGAGEMENT

Connection to Previous Plans and Existing Policies

Phase 3 of the TOD Mobility Study builds upon the recommendations of the 2010 *Approved Subregion 4 Master Plan and Sectional Map Amendment (SMA)*, the 2009 *Approved Countywide Master Plan of Transportation* (MPOT), and Phases 1 and 2 of the Central Avenue TOD Mobility Study. This project will further develop and identify strategies to support and facilitate a multimodal, fully integrated transportation network throughout the Sector Plan area, including recommending Complete Streets policy and implementation strategies. The Complete Streets implementation strategies provide the basis for development of a future Transportation Network Functional Overlay that designates street types, assigns networked elements (including transit routes and truck access), and establishes the relationship of the transportation network within the plan area to surrounding communities.

Subregion 4 Master Plan

In 2010, the Prince George's County Council approved the *Subregion 4 Master Plan and Sectional Map Amendment* (SMA). The *Subregion 4 Master Plan* establishes land use and development policies to implement the goals and policy recommendations of the 2002 *Prince George's County Approved General Plan*. The General Plan designates Subregion 4 as an area located within the Developed Tier, which places special emphasis on policies that will strengthen neighborhoods, support economic development along corridors, capitalize on transportation investments, and encourage transit-supporting, mixed-use, pedestrian- oriented neighborhoods. The Subregion 4 Master Plan further highlights the General Plan's goals by recognizing that the Central Avenue-Metro Blue Line corridor presents significant transit-oriented development (TOD) and economic investment potential for the county.

Phase 3 of the TOD Mobility Study supports the *Subregion 4 Master Plan*, which envisions a fully integrated multimodal transportation system around each of the corridor's four Metro stations. Once completed, current plans for redevelopment are expected to substantially increase the 12,600 passenger trips made each day at the 4 stations. Metro's proposed goal of tripling the number of passengers who access Metrorail stations by bicycle within the next ten years will also generate increased demand for bicycle adequate facilities. Realizing these visions will require the county to overcome several constraints, including an auto-oriented development pattern, limited right-of-way, and limited funding for multimodal improvements. The Central Avenue TOD Mobility Study makes low-cost recommendations to resolve these constraints, but additional coordination with the county and SHA staff will be essential to ensure implementation of these recommendations.

COUNTY MASTER PLAN OF TRANSPORTATION

Phase 3 of the TOD Mobility Study will refine and implement the *Master Plan of Transportation*'s (MPOT) vision for TOD, Complete Streets, and a multimodal transportation network. The goal of the MPOT is to provide county residents and workers with a safe, affordable, multimodal transportation system–which includes bicycle and pedestrian facilities, bus and rail transit service, and a road network–that effectively contributes to the timely achievement of the General Plan goals for growth, development, and revitalization.

The MPOT supports TOD as compact, transit-supporting, mixed-use development that integrates land use and density, site design, parking and accessibility into a specific vision for areas within a quarter- to half-mile of transit stations. The MPOT also supports the concept of, and provides policies and strategies for, achieving Complete Streets, which is integral to achieving the goals and vision of the sector plan. Complete Streets accommodates all users of streets, roads, and highways, including pedestrians, bicyclists, transit-users, motorists, seniors, and persons with disabilities. It also provides improved choices for travelers who may want alternatives to single-occupancy vehicles.

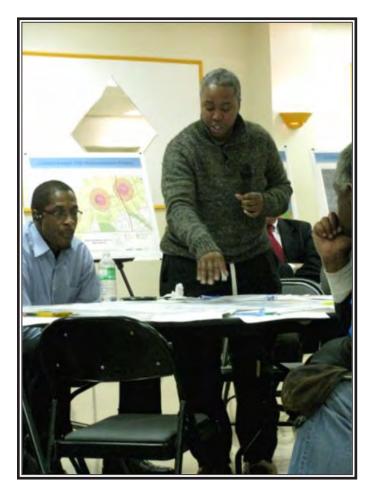
CENTRAL AVENUE TOD MOBILITY STUDY PHASE 1 AND PHASE 2

During Phase 1 of the Central Avenue TOD Mobility Study, short-term improvements to western Central Avenue were identified. In Phase 2, the short-term improvements to western Central Avenue were refined and analyzed, and short-term improvements to eastern Central Avenue were identified. Phase 3 builds on the analysis and results of the two prior phases to develop a long-term, corridorwide strategy for the implementation of TOD and Complete Streets.

Phase 1 of the Central Avenue TOD Mobility Study, *Pedestrian and Bicycle Access and Circulation (Transportation Land use Connections Program)*, set the stage to apply Complete Streets principles to enhance pedestrian safety and improve access and mobility for pedestrians and bicyclists. Phase 1, conducted in FY 2011, reviewed pedestrian and bicycle safety and access for the Capitol Heights and Addison Road- Seat Pleasant Metro stations.

Beginning in the fourth quarter of FY 2011, Phase 2 of the Central Avenue TOD Mobility Study (a neighborhood and metro station access and streetscape improvement plan) was completed. This phase emphasized pedestrian and bicycle safety, and access for the Morgan Boulevard and Largo Metro stations, as well as the Central Avenue corridor between Hill Road/Shady Glen Drive and the Capital Beltway (1-95/1-495). Phase 2 produced preliminary recommendations for improvements at these locations, along with potential low-cost funding sources to implement the recommended improvements.

Public Involvement Process


Public involvement is a key element to understanding the existing conditions and transportation needs of the corridor. The Phase 3 analysis was informed by feedback received through multiple public outreach meetings and an interactive map featured on the project website. Public meetings were held over the course of the project, focusing on a range of different issues, including:

- Western Corridor (Southern Avenue to Hill Road) Issues. November 29, 2011 from 6:45-9:00 p.m. at St. Margaret's Church.
- Eastern Corridor (Hill Road to I-495) Issues. December 8, 2011 from 6:45-9:00 p.m. at the Sports and Learning Center.
- Market Analysis. April 12, 2012 from 7:00 to 9:00 p.m. at the Sports and Learning Center.
- Existing and Future Transportation Analysis. April 26, 2012 from 7:00 to 9:00 p.m. at the Sports and Learning Center.
- Complete Streets Open House. May 17, 2012 from 7:00 to 9:00 p.m. at the Sports and Learning Center.

All public meetings were held at St. Margaret's Church near the Addison Road Metrorail station and the Sports and Learning Center near the Morgan Boulevard Metrorail station. All meetings included informational presentations on the project and group discussion of public needs and expectations through mapping and table exercises.

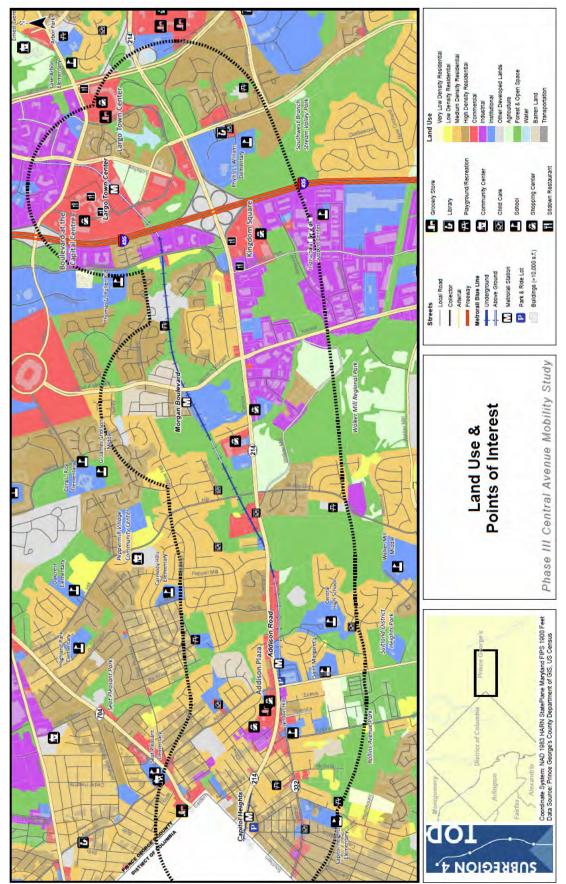
Public agency stakeholders were also engaged throughout the project development process. Stakeholder interviews and meetings were conducted with the Prince George's County Department of Public Works and Transportation (DPW&T), Maryland State Highway Administration (SHA), Washington Metropolitan Area Transit Authority (WMATA), Maryland-National Capital Park and Planning Commission (M-NCPPC), District of Columbia Department of Transportation (DDOT), and others to identify issues and obtain agency feedback on recommendations.

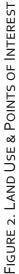
A summary of the feedback received from these meetings and the project website can be found in Appendix 1. The community and agency feedback from these outreach meetings informed the analysis and recommendations for this report.

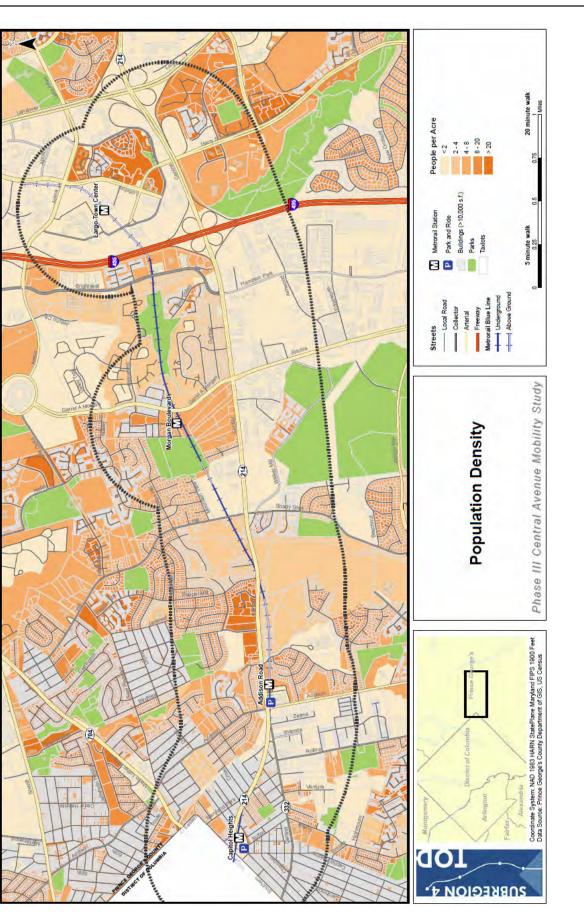
Residents shared their vision and concerns for the study area through group discussion and mapping exercises during multiple public meetings.

Section 4 Existing Conditions

EXISTING CONDITIONS


As shown in Figure 1, the study area is defined as the area within one-half mile of the Central Avenue (MD 214) corridor from the Washington, D.C. boundary to the Central Avenue/Landover Road (MD 202) intersection and includes areas within one-half mile of the four Metrorail stations on the corridor. The existing conditions analysis provides an overview of this study area, existing transportation facilities, and a safety analysis for the Central Avenue Corridor. The existing conditions analysis includes feedback received from public and agency outreach meetings and an interactive map on the project website. A summary of community comments received both from meetings and the website can be found in Appendix 1.

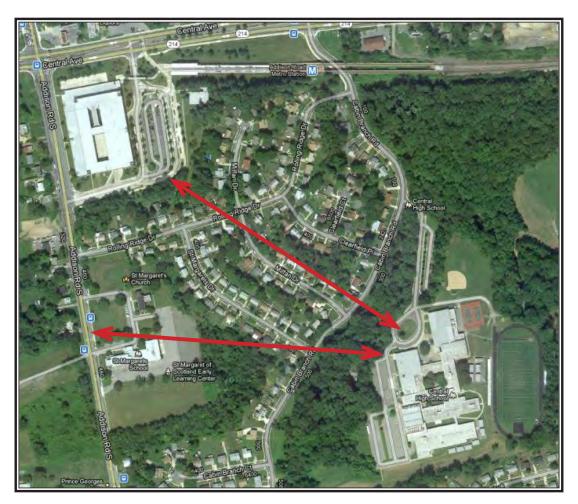

Land Use and Demographics


The current land use pattern along the corridor is clustered with few "mixed use" land areas, as shown in Figure 2. Retail, residential, and industrial uses are segregated. These land use patterns require residents to travel long distances to reach shopping, employment, and other destinations; as a result, they do not support access by walking, bicycling, or transit.

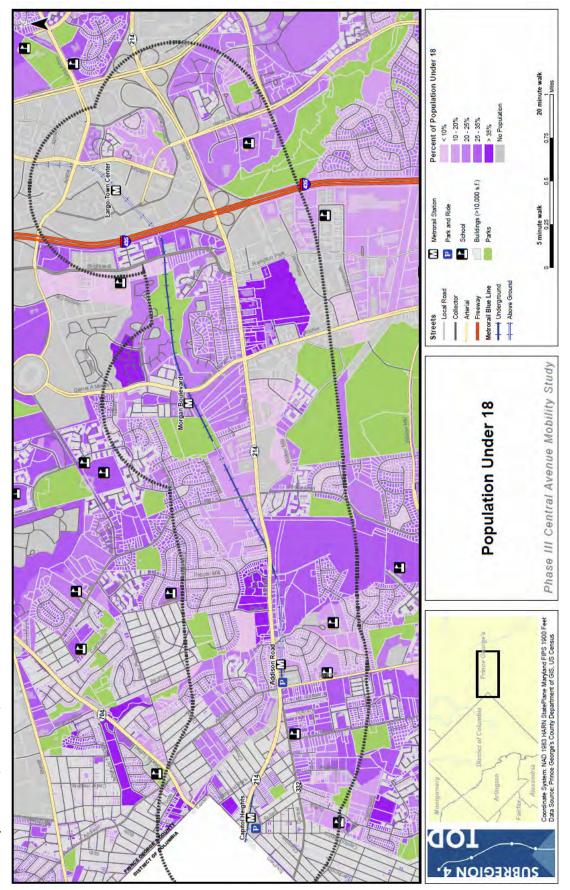
As shown in Figure 3, several dense residential areas along the Central Avenue corridor are priority opportunity areas to improve Metrorail station, pedestrian, and bicycle connections:

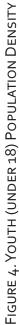
- Camden Summerfields (adjacent to the Morgan Boulevard Metrorail Station)
- Largo Town Center (east of I-495 and north of Central Avenue (MD 214))
- Carmondy Hills–Pepper Mill Village (near Hill Road/Seat Pleasant Drive)
- North Englewood (near Landover Road (MD 202)/Martin Luther King Jr. Hwy (MD 704))
- Lake Arbor (near Landover Road (MD 202)/Lake Arbor Way)

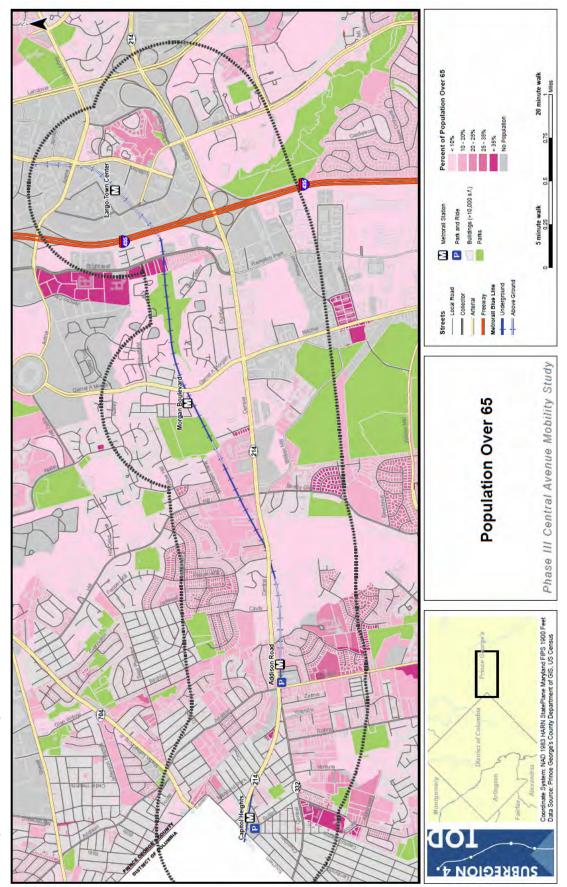
Areas with high concentrations of youth (residents under 18) and senior citizens (residents over 65), as shown in Figure 4 and Figure 5, are also priority areas for improving connections to schools, transit, parks, and other community destinations. Locations with a high concentration of youth or senior residents include:

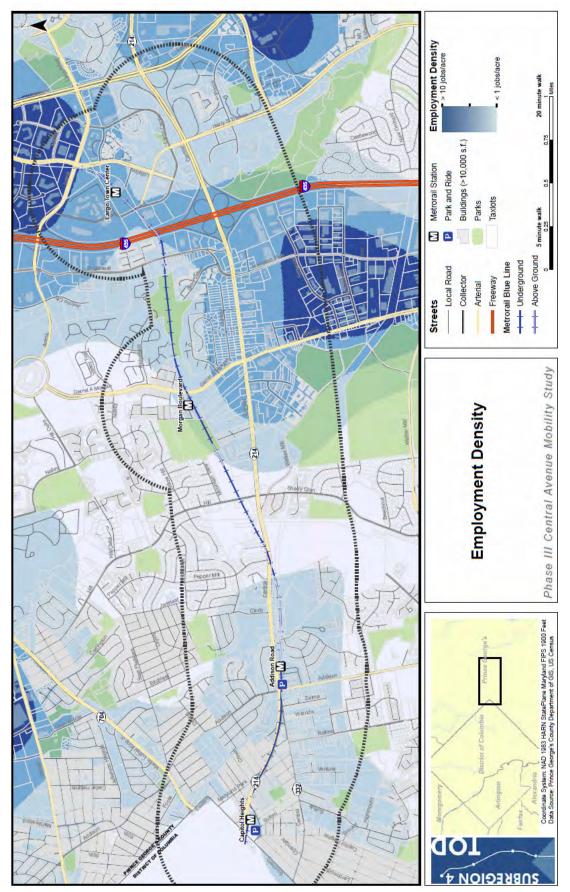

Youth Population:

- Camden Summerfields (Adjacent to the Morgan Boulevard Metrorail Station)
- Carmondy Hills–Pepper Mill Village (Near Hill Road/Seat Pleasant Drive)
- Seat Pleasant (Along Martin Luther King Jr. Highway)


Senior Citizens Population:


- Brightseat Road (Near FedEx Field)
- Walker Mill (Adjacent to Addison Road South)
- Capitol Heights (South of Old Central Avenue/MD 332)


As shown in Figure 6, the two areas with the highest employment density are located south of Central Avenue and in the Largo Town Center. These are also priority areas to connect to surrounding bus stops and the Morgan Boulevard and Largo Town Center Metrorail stations.


There are currently no direct pedestrian connections between Central High School and nearby residential areas or transit stops.

Existing Market Conditions¹

As part of the Phase 3 work, and presented in a separate report, AECOM developed a market analysis for the Central Avenue project area. The key objectives of the market analysis study were to:

- Identify and define short and long term realistic market opportunities
- Outline the TOD development potential at each of the four stations
- Identify catalytic projects for early opportunities
- Look at infrastructure needs and alternative funding opportunities for implementation
- Identify proactive approaches to support TOD and economic growth
- Define potential marketing and branding strategies to attract TOD

The study outlines the benefits of TOD, which may include: increased access to amenities and employment, less parking demand, place-making, improved pedestrian activity, decreased emissions, compact land form, decrease in autodependency, increased equity for lower-income households, and increased value and marketability of nearby residential and commercial properties. Market opportunities were quantified and provided to the Kittelson Team in order to analyze traffic conditions and transportation needs for the future. The following discussion presents key findings of that study.

The Central Avenue corridor is an important gateway to Prince George's County and has a high potential for successful TOD implementation. Weekly average weekday ridership is over 12,000 at the four transit stops in the corridor–this could be increased with the addition of residential and commercial development at and near Metro stations, especially at the Largo Metro station, which is recognized by Prince George's County as a priority TOD site. Furthermore, several large publically owned parcels of land are close to all four Metro station locations, and the county has Transit District Overlay and Development District Overlay Zones in place to facilitate TOD.

RESIDENTIAL MARKET ANALYSIS FINDINGS

Opportunities for growth in the residential market for homeownership are derived from established, stable neighborhoods that are relatively affordable and in close proximity to employment, cultural, and entertainment opportunities. There are positive indications that the rental market is stable, as vacancy rates have declined since 2009. Negatives for the residential market are slowing, but still decreasing average sales prices for home, a decline in the total number of units sold, a high countywide foreclosure rate, and a decrease in year-over-year rent growth. Overall, the residential market has a total demand of approximately 2,000 to 2,500 total units along the corridor by 2033, with the potential for workforce and/or senior housing.

RETAIL MARKET SUMMARY FINDINGS

Opportunities for growth in the retail market are derived from the area being relatively underserved by retail, and high levels of residents' retail spending occurs outside of the Central Avenue corridor. In particular, the area can support more restaurants, bars, and retail stores that sell electronics and sporting goods. Currently, retail space within the Boulevard at the Capital Centre is performing well. Supermarkets present a market opportunity in the area, but the market is

¹ Central Avenue Market & Branding Study, AECOM, Aug 2012.

competitive and several other options are available within a ten- minute drive. A new Wal-Mart proposed for the Capitol Gateway area, just inside the District of Columbia, will have implications for other retailers in the area if it is built, but opportunities exist for synergistic retail to complement the big-box retailer. Overall, retail demand is between 175,000 -235,000 SF over the next several years, likely grouped into two or three clusters to maximize visibility, transit and vehicular access, and proximity to residential and office development.

OFFICE MARKET

The Central Avenue corridor presents a number of opportunities for new office space, mainly predicated on the easy access to Washington, D.C. and the Beltway. The projected demand over the next 20 years lies between 180,000 and 280,000 square feet of new space. A good deal of this office space could be developed as part of a mixed-use project located near a Metro station, with the Morgan Boulevard station providing the most land and potential. Opportunities for new space include a large federal or institutional tenant such as a medical center, though competition is expected to be strong. Currently, the high amounts of vacant office space throughout Prince George's County impact demand for new space.

Connectivity and Urban Form

Most of the study area is within a 20-minute walk to a Metrorail station, if direct connections were present. Walk times are longer, however, due to poor connectivity and the cul-de-sac nature of the streets. Wide cross sections, long distances between intersections, and limited crossing locations make Central Avenue a barrier to north-south connectivity. This is evident in Figure 7 and Figure 8, which shows the difference between the potential area within a 20-minute walk of Metro stations and the actual area currently reachable within a 20-minute walk. As shown in Table 1, future connectivity improvements could increase the service area and population within a 10-minute walk of the Morgan Boulevard and Largo Town Center's stations by 500 percent.

TABLE 1. POTENTIAL AND EXISTING NETWORK WALKABILITY

	Area (Acres) Reachable Within a 10 Minute Walk		Population Reachable Within a 10 Minute Walk		
Metro Station	Existing Network	Potential	Existing Network	Potential	
Morgan Blvd.	88.0	502	476	2,716	
Largo Town Center	103.1	502	558	2,716	

Potential reachable population estimated based on average overall population density in the study area (5.41 residents/acre).

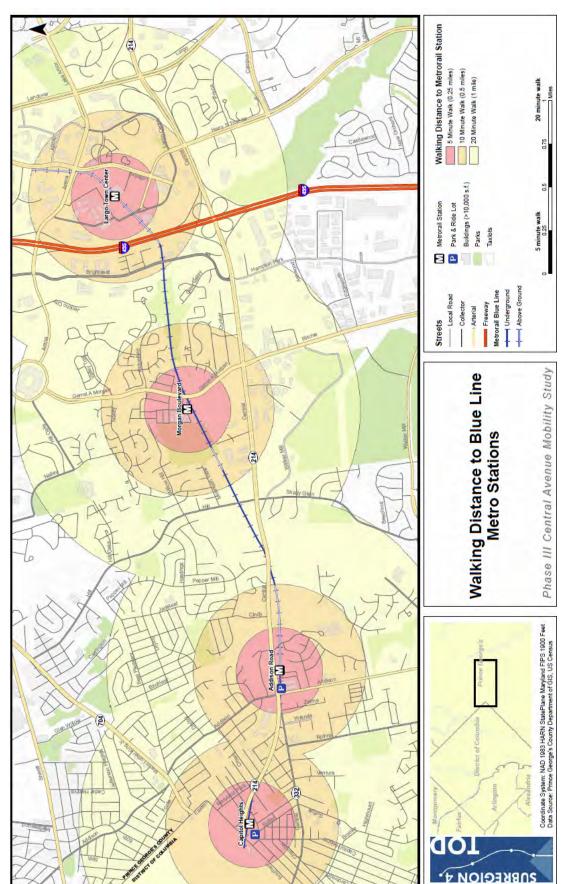


Figure 7. Potential Walkable Area

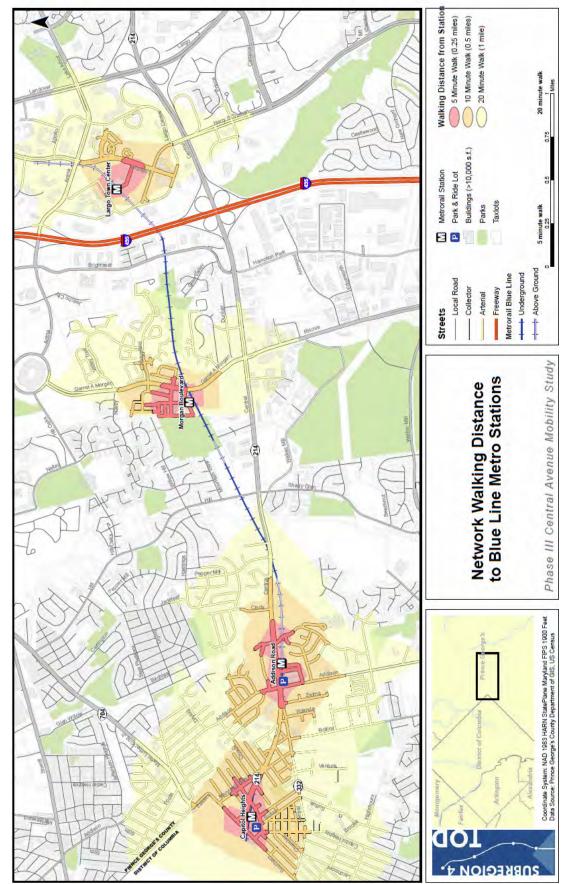
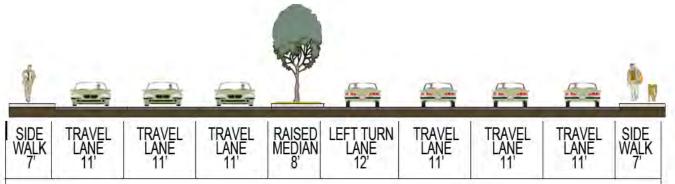


FIGURE 8. EXISTING NETWORK WALKABILITY


Overview of Transportation Facilities

This section describes the existing transportation network and facilities in the Central Avenue corridor and the broader project area.

CENTRAL AVENUE CROSS-SECTION

Central Avenue is a seven-lane principal arterial from the Washington, D.C. border to the Capital Beltway, where its functional classification then transitions into an expressway. The western portion of the corridor (Southern Avenue to Cabin Branch Road) has a 100-foot right-of-way, three 11-foot travel lanes in each direction, a raised median, and 7-foot sidewalks on both sides of the street. The eastern half of the corridor has a 105-foot right-of-way, two 11-foot travel lanes and an outer 14-foot travel lane in each direction, a raised median, and 5-foot sidewalks on both sides of the road. Figure 9 illustrates the typical cross sections of Central Avenue.

FIGURE 9. CENTRAL AVENUE TYPICAL CROSS SECTIONS

CENTRAL AVENUE – SOUTHERN AVENUE TO CABIN BRANCH ROAD

CENTRAL AVENUE – CABIN BRANCH ROAD TO HAMPTON PARK BOULEVARD

PEDESTRIAN FACILITIES

Figure 10 shows the locations of existing pedestrian and bicycle facilities in the study area. Pedestrian challenges in the study area include: inadequate pedestrian facilities, poor lighting, missing crosswalks, freeway ramps, and channelized right turns along the corridor. Central Avenue has long crossings and few marked crosswalks. Pedestrians will not typically walk more than 200 feet to cross the street, and mid-block opportunities should be considered if signal spacing is over 400 feet. The closest spacing between marked crosswalks on the corridor is 480 feet and the farthest is about 4,225 feet. Pedestrian facilities are also discontinuous in the study area, and connections to key destinations and transit services are poor. Priority destinations for pedestrians include: the Metrorail stations, the commercial shopping center near Hampton Park Boulevard, FedEx Field, Largo Town Center, and several schools.

As part of the existing conditions assessment, a pedestrian level of service (LOS) analysis was completed. Figure 11 shows the results of the pedestrian LOS analysis. A high pedestrian LOS is characterized by wider sidewalks separated from vehicle travel lanes. Signalized intersections with the highest pedestrian LOS have few conflicts between pedestrians and turning vehicles (i.e., protected left-turn signal phasing) and minor street approaches with short pedestrian crossing distances.² The locations with the

Channelized lanes are intended to improve traffic flow at intersections; they are lanes separated or dedicated to right turns. They are problematic for cyclists and pedestrians, as it makes it difficult for them to cross the street.

lowest pedestrian LOS-including Southern Avenue and East Capitol Extended-lack sidewalks, have sidewalks that are not separated from traffic, have high volumes on the minor approach, and/or have channelized right turns.³

² The I-495 ramp intersections received unexpectedly high LOS rankings, despite the lack of pedestrian facilities in this portion of the study area. This is due to the fact that the ramp approaches are a single lane serving a single traffic movement, which would typically indicate an intersection with a short crossing distance and predictable interactions between pedestrians and vehicles. This portion of the study area presents unique challenges not accounted for in the MMLOS methodology; as a result, engineering judgment is required.

³ The pedestrian LOS model is scaled in such a way that signalized intersections cannot score lower than a LOS D. As a result, the pedestrian LOS at intersections must be considered relative to each other with the understanding that the intersection could not score below a LOS D.

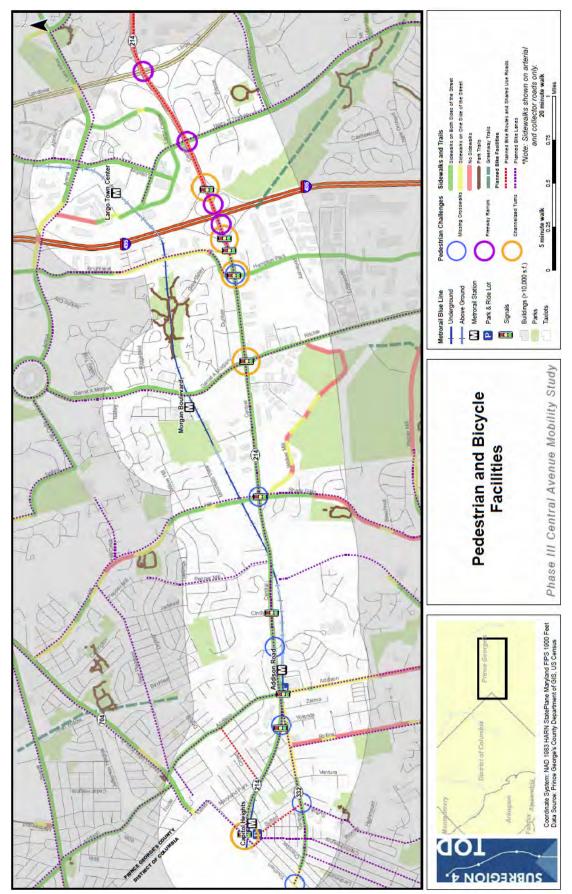


FIGURE 10. PEDESTRIAN AND BICYCLE FACILITIES

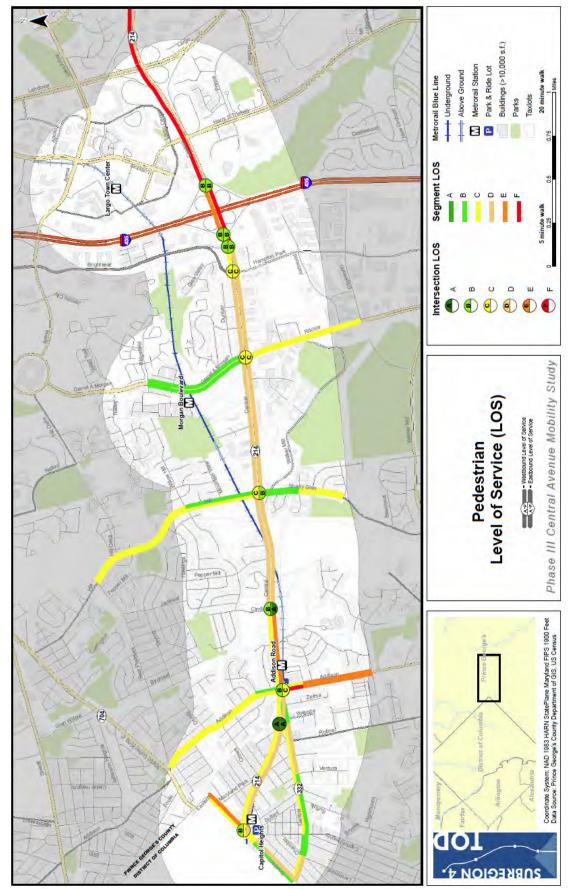


FIGURE 11. PEDESTRIAN LEVEL OF SERVICE

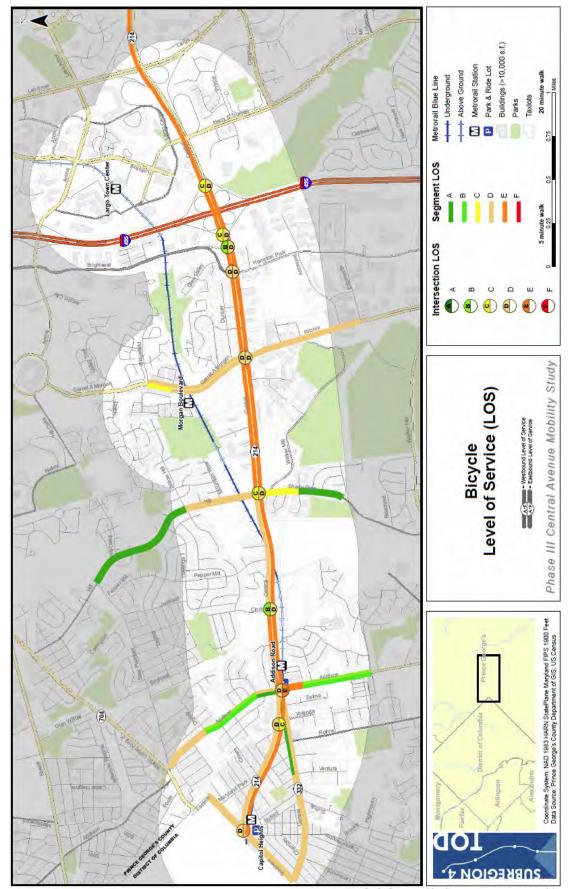

BICYCLE FACILITIES

Figure 10 shows the locations of planned bicycle facilities identified in the Prince George's County 2010 Bicycle Master Plan. Bike lanes and bike routes are not provided along the corridor. The challenges of limited bicycle facilities, lack of connectivity, high traffic speeds and volumes, and an unsupportive land use pattern result in low bicycle volumes in the study area. Substantial amounts of bicycle parking at Metro stations is left unused due to these challenges.

Figure 12 shows the results of the bicycle level of service (LOS) analysis that was conducted as part of the existing conditions analysis. Bicycle LOS is based on factors such as outside lane width, shoulder or bike lane width, traffic volume, speed, and the crossing distance at signalized intersections. Only advanced bicyclists currently travel on Central Avenue due to high traffic volumes, speed, and a lack of roadway space. Adding bike lanes may attract additional cyclists. Parallel routes to Central Avenue are also lacking, indicating that connectivity may be improved for short trips within the study area.

Improving bicycle connections to transit and providing bike racks on buses can make it easier for passengers to access stations and increse the effective service area of stations.

TRANSIT SERVICE AND ACCESS

Figure 13 shows existing transit facilities in the study area. Transit services available in the study area include the Metrorail Blue Line and 16 bus transit lines operated by Metrobus and TheBus. Daily ridership ranges from 1,500 to 5,600 on each line. The transit system includes express bus routes and routes that offer service 24 hours a day on weekdays. Weekend service is available on some bus routes and the Metrorail Blue Line. Metrobus and TheBus routes travel along most of the arterial and collector roadways in the study area, with stops within a five-minute walk of the majority of residents and workers in the study area. Most of Central Avenue (MD 214) is served by three to four bus routes.

Transit LOS was calculated for arterial and collector roadways and signalized intersections served by Metrobus and/ or TheBus routes. The results of the transit LOS analysis are shown in Figure 14. Deficiencies include infrequent bus service, poor on-time performance, lack of shelters, and segments without any bus stops. Additional challenges include: bus stops located far from marked pedestrian crossings, transit stops that do not connect to surrounding areas by pedestrian facilities, unlit bus stops, and indirect routes.

Small improvements to existing facilities can potentially increase ridership and improve the user's transit experience. Stops with potential to generate high ridership that should be prioritized for improvements include:

- Capitol Heights, Addison Road, Morgan Boulevard and Largo Town Center Metrorail stations
- Bus stops near the Central Avenue (MD 214)/Addison Road intersection
- Bus stops near Kingdom Square (Southwest of the I-495 interchange) and Largo Town Center

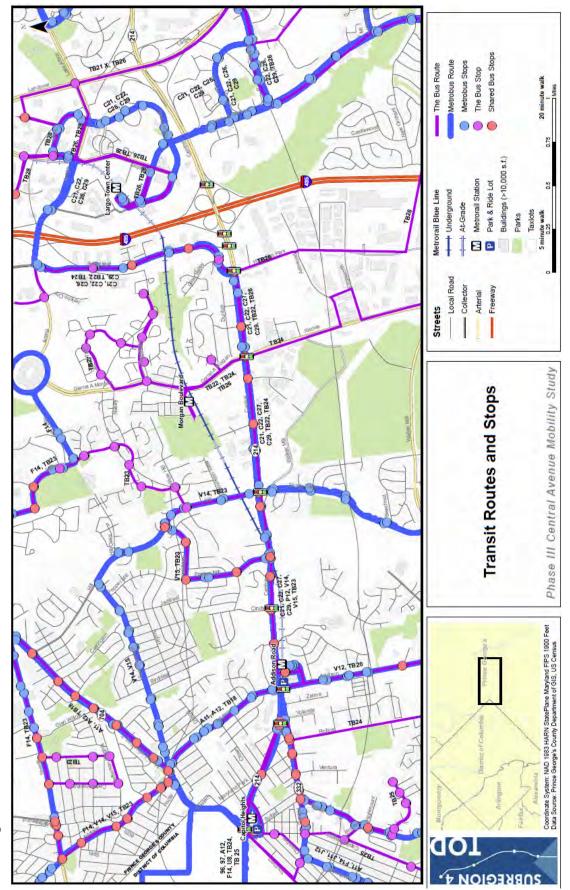
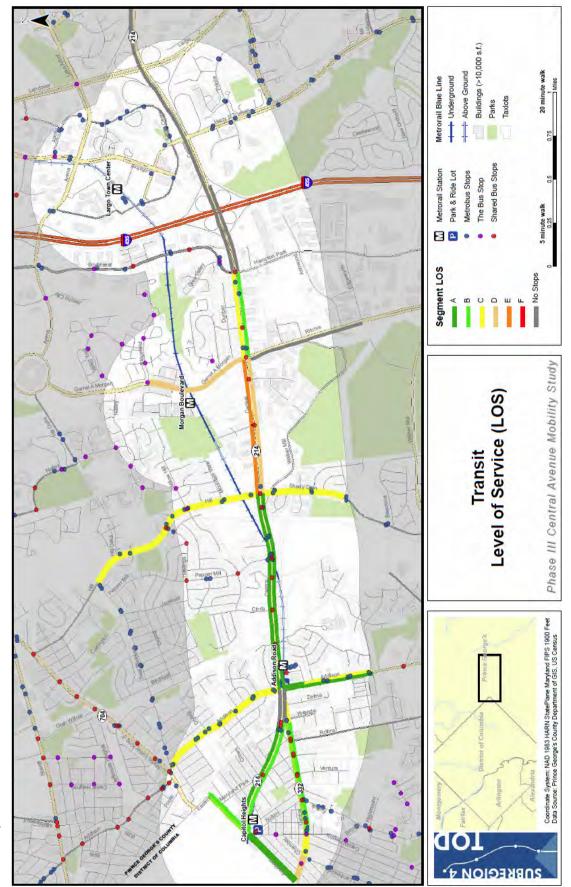
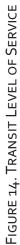




Figure 13. Existing Transit Facilities

TRAFFIC OPERATIONS

Figure 15 shows the functional classification of streets within the study area. Design guidance for each classification is contained in DPW&T's Specifications and Standards for Roadways and Bridges and evaluated in the "Design and Policy Review" section of this report.

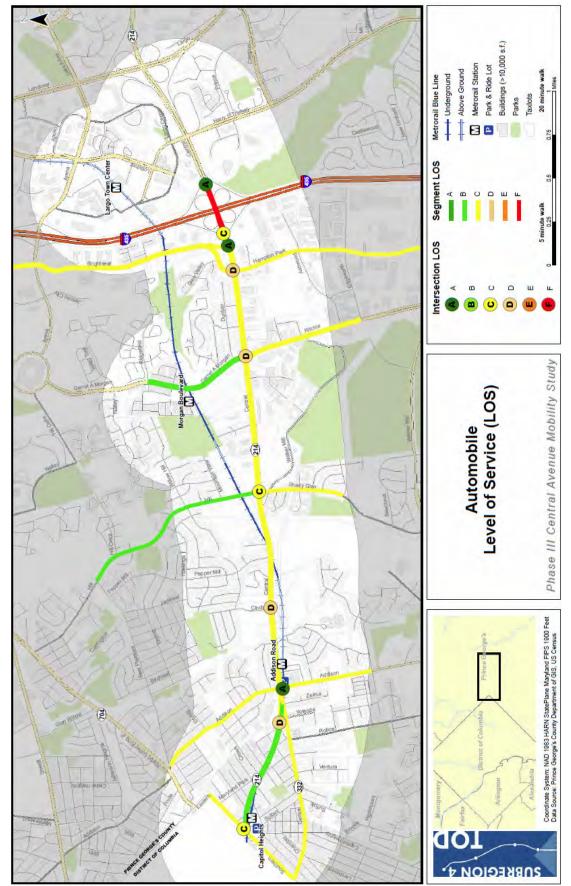
As part of the existing conditions assessment, a link-level operational analysis was conducted for Central Avenue and other arterial and collector roadways in the study area⁴. The LOS segment analysis can be used to broadly evaluate the performance of the road network and help identify areas that may need improvement. Central Avenue segments, as well as cross streets on the north and south sides of Central Avenue, were analyzed for peak hour traffic delay. Figure 16 shows the LOS of key intersections and roadway segments within the study area.

Central Avenue

Central Avenue (MD 214) is a seven-lane arterial with a landscaped median within the study area. Access to properties on the north and south side is generally restricted to right-in, right-out movements. The speed limit along Central Avenue is 30 mph between Southern Avenue and Pepper Mill Road and 40 mph east of Pepper Mill Road; however, the roadway is designed for speeds greater than those posted. The Subregion 4 TOD Implementation Project Phase II: Alternative

Concepts Technical Memorandum showed that all signalized intersections on Central Avenue currently meet SHA and M-NCPPC performance standards and operate at LOS D or higher during the morning and afternoon peak periods.

For the majority of the corridor during the morning peak hour, the LOS segment methodology shows that the corridor operates at LOS C. Directional flows in the afternoon peak hour are more balanced than during the morning peak hour. Similar to the morning peak hour, during the afternoon peak the majority of segments between signalized intersections operate at LOS C. The segment near the ramp terminals performs at LOS F.


LOS is a measure used by traffic engineers to determine the traffic flow of a roadway. Level D indicates that the road is at capacity, it is highly congested, and drivers have limited freedom to maneuver.

A **Link-Level Operational Analysis** determines if roadways and signals provide acceptable moving levels of service during a specific period of time.

⁴ A complete explanation of segment LOS may be found in the 2010 HCM in Chapter 16. The assumptions used in the analysis are detailed on page 16-26. The summary table that was used to determine the peak hour segment LOS is Exhibit 16-14 on page 16-27. The Central Avenue study area meets most of the 2010 Highway Capacity Manual (HCM) assumptions necessary to generate daily service volumes, with the exception of cycle length, weighted g/C ratio, and percent of traffic during left/right onto cross streets. It is estimated that the missing assumptions cause little effect on the overall results. The LOS segment analysis may be expected to slightly overestimate the operational performance of Central Avenue (MD 214).

Cross Streets

Six major side streets cross Central Avenue in the project corridor. The cross streets range in cross-section from two to six lanes, and have speed limits between 30 and 35 miles per hour. For both the morning and afternoon peak hours, the segment LOS for the northbound and southbound intersecting street approaches ranges from LOS B to C. The directional factor for the side streets, which generally falls within a range of between 55 and 60 percent of total volume, means that side street volumes are more evenly distributed than traffic on Central Avenue.

Safety Analysis

The existing conditions analysis included a review of crash histories at study intersections along Central Avenue (MD 214) to identify crash-reduction opportunities. MDOT provided crash data for the study intersections from January 2008 through December 2010.

DESCRIPTIVE CRASH STATISTICS

Crashes were examined based on crash type, direction, severity, weather, roadway condition, lighting, time of day, day of week, and year. Figure 17 shows crash density along Central Avenue and identifies pedestrian and bicycle crash locations. The area along the corridor with the highest frequency of crashes for the reporting period was the Addison Road/Central Avenue intersection with 98 reported crashes, followed by the roadway segment between the I-95 on/off ramps with 77 reported crashes. There were three other intersections with more than 40 reported crashes: Hampton Park Boulevard/Central Avenue Intersection (60 crashes); Shady Glen Drive/Central Avenue Intersection (57 crashes); and Ritchie Highway/Central Avenue Intersection (46 crashes). The remaining intersections experienced 20 or fewer total reported crashes. Crash data characteristics for the five study areas with the highest frequency of crashes and information regarding the fatal crashes reported are discussed below.

Addison Road/Central Avenue

The Addison Road/Central Avenue intersection had the highest frequency of total reported crashes. There were 31 reported rear-end crashes, 21 reported head-on crashes, two reported fatal crashes, and nine reported pedestrian/bicycle crashes. The majority of the crashes occurred during night hours. Protected left-turn signal phasing and modifications to increase the level of lighting at the intersection may help reduce crashes.

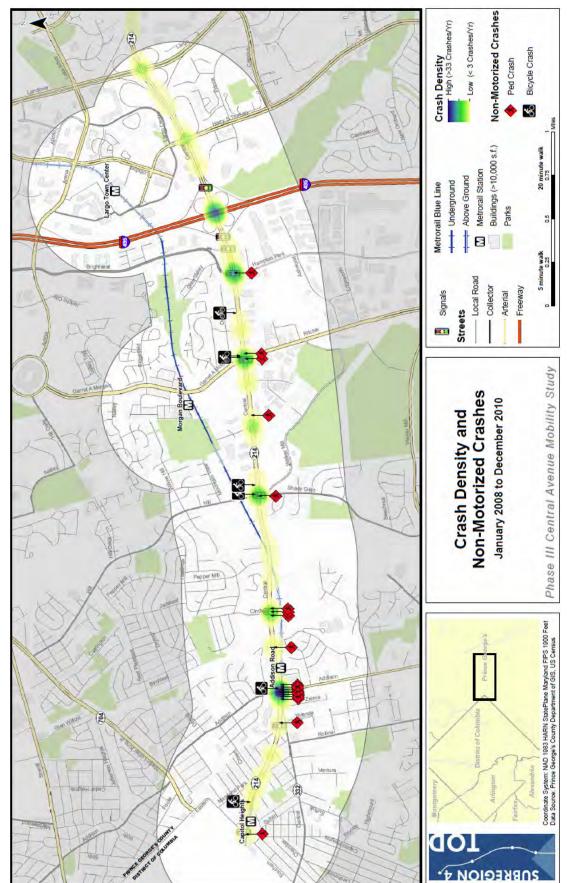


FIGURE 17. CRASH DENSITIES ALONG CENTRAL AVENUE

Roadway Segment between I-95 On/Off Ramps

A total of 77 crashes were reported for the roadway segment between the I-95 On/Off Ramps. There were 30 reported rear-end crashes and 20 reported fixed-object crashes. These crashes are likely related to the weaving section on Central Avenue (MD 214) between the I-95 On/Off Ramps. Modifying the lane numbers and arrangements within the section may help mitigate crashes. The percentage of injury crashes on this roadway segment was 57 percent; no fatal crashes were reported.

Hampton Park Boulevard/Central Avenue

The Hampton Park Boulevard/Central Avenue intersection recorded 60 crashes. There were no reported fatal crashes, 40 reported crashes were property damage-only crashes, 19 reported rear-end crashes, and 11 reported side-swipe crashes. The majority of crashes occurred in the eastbound direction, likely due to the right-turn only lane in the eastbound direction and five nearby driveways. Modifying lane configurations and consolidating access points may help mitigate crashes.

Shady Glen Drive/Central Avenue

The Shady Glen Drive/Central Avenue intersection experienced 57 reported crashes. The reported crashes have the following distribution: 19 rear-end, 13 head-on, and 11 angle crashes. Approximately 44 percent of the reported crashes occurred during night hours. Increasing the level of lighting may help mitigate crashes. Two fatal crashes were reported. The fatal crashes appear to be random events not indicative of a trend or pattern at the intersection.

Ritchie Highway/Central Avenue

The Ritchie Highway/Central Avenue study intersection experienced 46 reported crashes, including 18 injury crashes and one fatal crash. There were 27 reported rear-end crashes. The rear-end crashes at the intersection tended to occur in the eastbound direction, which may be related to the driveways located within the last 350 feet approaching the intersection. Consolidating these driveways may help reduce crashes. There was one reported fatal crash: a pedestrian was struck at night. Increasing lighting may help reduce crashes.

Fatal Crashes at Other Study Intersections

There were two reported fatal crashes at Maryland Park Drive. One was the result of a head-on collision and the other was a fixed-object crash. Both occurred at night. One reported fatal crash occurred at Cabin Branch Road as the result of a truck hitting a pedestrian at night. Another fatal crash occurred at West Hampton Drive as the result of two eastbound vehicles colliding.

CONTRIBUTING AND MITIGATION FACTORS

KAI analyzed the contributing factors coded in the crash data for each study intersection. Approximately 40 percent of the crashes had contributing factors related to failure to pay attention. Other prevalent contributing factors were speeding and failure to obey traffic signals. Potential mitigation factors include: increased lighting, pedestrian signals, signal-phasing changes such as protected left turns or leading pedestrian intervals, providing a right-turn lane on major approaches, increased enforcement, and installing medians on multi-lane roads.

Existing Conditions Conclusions and Recommendations

LAND USE AND URBAN FORM

Land use patterns indicate that development is currently clustered and organized in single-use patterns. Central Avenue is characterized by low-density suburban development, fostering a transportation network with low connectivity. This forces trips onto Central Avenue (MD 214) and limits the catchment area of Metrorail stations for pedestrians. It is difficult to use any mode other than a motor vehicle for local trips.

Mixed-use development zoning and land use should be encouraged. Opportunities for multimodal connections include: Central Avenue and Hill Road/Shady Glen Avenue, Central Avenue and Jonquil Avenue, Central Avenue and Brightseat Road/Hampton Park Boulevard, Harry S. Truman Drive and the Largo Town Center, trail connections at the Central Avenue/Morgan Boulevard Metrorail station, east-west trail connections to Metro stations, and trail connections to Metro stations from neighborhoods. Proposed land use policy and zoning changes are discussed in the "Design and Policy Review" section of this report. A map of all recommended network/connectivity improvements is included in the "Complete Streets Strategies" section of this report.

PEDESTRIAN FACILITIES

The analysis of the pedestrian facilities identified areas where LOS is deficient and pedestrians mobility is challenged due to roadway segment and intersection design and poor network connectivity. Low-performing intersections and roadway segments had an LOS C or lower. Segment deficiencies include: lack of adequate sidewalks, the freeway nature of the roadway, few crossing opportunities, lack of buffers between the traffic and pedestrians on Central Avenue (MD 214), and the poor connectivity of the street network. Intersection deficiencies include: pedestrian delay at unsignalized intersections, wide crossing distance, channelized right turns and freeway ramps, low light, and high traffic volumes and speeds.

Opportunities to address pedestrian challenges and improve level of service in the study area are evaluated in the "Complete Streets Strategies" and "Future Conditions" sections of this report. Specific recommendations include:

- Install a pedestrian hybrid beacon at the Addison Road Metro crossing.
- Improve signal timing on Central Avenue to reduce pedestrian delay. Cycle lengths should be reduced to 120 seconds with adequate pedestrian clearance time.
- Reduce cross-section widths and create buffers between traffic and sidewalks.

Additional opportunities include installing: full or pedestrian traffic signals with marked crosswalks, hybrid pedestrian beacons, rectangular rapid-flashing beacons, signage, signal modifications (e.g., protected left turns), and/or removing travel lanes to narrow crosswalk distances.

BICYCLE FACILITIES

The only bicycle accommodation in the study area is the bicycle parking at the Metrorail stations. Dedicated road space is not provided on any of the study area streets and parallel alternatives to Central Avenue (MD 214) that could provide low-volume/speed routes for cyclists is unavailable. Priority roadways for bicycle facility improvements include segments along Central Avenue (MD 214) and Garret A. Morgan Boulevard/Ritchie Road with LOS D or E. In these areas bike lanes or shoulder bikeways could improve bicycle LOS, rider comfort, and encourage biking for the more experienced bicyclist. Priority intersections for bicycle improvements include Central Avenue/Addison Road, Central Avenue/Garrett Morgan Boulevard, and Central Avenue/Hampton Park Boulevard where wide intersections leave cyclists vulnerable as it takes longer to cross the intersection.

Potential opportunities for improved bicycle mobility, attractive to a broader range of skill-levels, are evaluated in the "Complete Streets Strategies" and "Future Conditions" section of this report. They include reallocating road space for bicycle facilities and creating parallel routes as bicycle-friendly alternatives to Central Avenue.

TRANSIT

Transit challenges include bus routes with unreliable and infrequent service. Several streets experience poor on-time performance and service gaps exist on Central Avenue from Old Central Avenue to Addison Road and from Hampton Park Road to east of I-495. The lack of bus services here creates a transit divide between the east and west side of I-495.

Opportunities to improve transit accessibility and LOS are evaluated in the "Complete Streets Strategies" and "Future Conditions" sections of this report. Options include:

- Relocating bus stops closer to pedestrian crossings and increasing the number of stops to 4 or 5 per mile.
- Widening sidewalks near bus stops, removing obstructions near waiting areas, installing shelters, and adding or improving lighting.
- Redesigning long and circuitous bus routes into shorter, simpler ones. This can create a transit system that achieves redundancy, efficiency and routes that run parallel to each other and cover a larger area more effectively.
- Converting stations to intermodal hubs where people can transfer from rail to bus, expanding potential ridership to people that live or work near bus stops.
- Improving facilities near the Central Avenue (MD 214)/Addison Road intersection to make them more visible and more attractive to new riders.
- Creating a "transit-oriented" atmosphere in the shopping center near Kingdom Square and the Largo Town Center to make taking transit more attractive for nearby residents who would otherwise drive.

TRAFFIC

During both the morning and afternoon peak hours, all segments of Central Avenue perform at LOS C, except for the area near the I-495 ramp terminals, which performs at LOS F.⁵ The six major signalized cross streets with Central Avenue operate at LOS B or LOS C. The corridor is auto-oriented, and motorized vehicles have the highest overall LOS of any of the modes for the corridor.

Opportunities to improve roadway design and connectivity are evaluated in the "Complete Streets Strategies" and "Future Conditions" sections of this report. Options include:

- Implementing parallel routes to Central Avenue (MD 214).
- Reallocating road space to accommodate active modes.
- Implementing protected left turns, improved signal phasing, and 120-second cycle lengths.
- Applying access-management strategies along Central Avenue (MD 214).

SAFETY

The priority areas for safety improvements are:

- 1. The Addison Road/Central Avenue intersection
- 2. The segment of Central Avenue between I-95 on/off ramps
- 3. The Hampton Park Boulevard/Central Avenue intersection
- 4. The Shady Glen Drive/Central Avenue intersection
- 5. The Ritchie Highway/Central Avenue intersection

The most prevalent contributing factor was "Failure to Give Full Attention" followed by speeding and failure to obey a traffic signal.

Potential safety mitigations include:

- Implementing protected left-turn signal phasing on Central Avenue (MD 214)
- Improvements at and on approaches to intersections
- Adjusting clearance times
- Making intersections more comfortable to pedestrians
- Installing pedestrian countdown signals
- Providing leading pedestrian interval (LPI)
- Improving weaving distance between I-95 on/off ramps

⁵ The eight-lane sections of Central Avenue near the I-495 interchange lie outside the HCM methodology for determining segment LOS.

Section 5 Design and Policy Review

DESIGN AND POLICY REVIEW

As part of the analysis conducted for the Central Avenue Transit-Oriented Development Implementation Project, the consultant team worked with community members, local agencies, and stakeholders to identify transportation issues and values, as well as obstacles to achieving transit-oriented development in the study area. The team also reviewed existing state and county transportation practices, policies, and guidelines to identify potential gaps or inconsistencies in supporting active transportation, transit, and complete Streets. Through this review, several key issues related to achieving transit-oriented development and complete streets were identified, including:

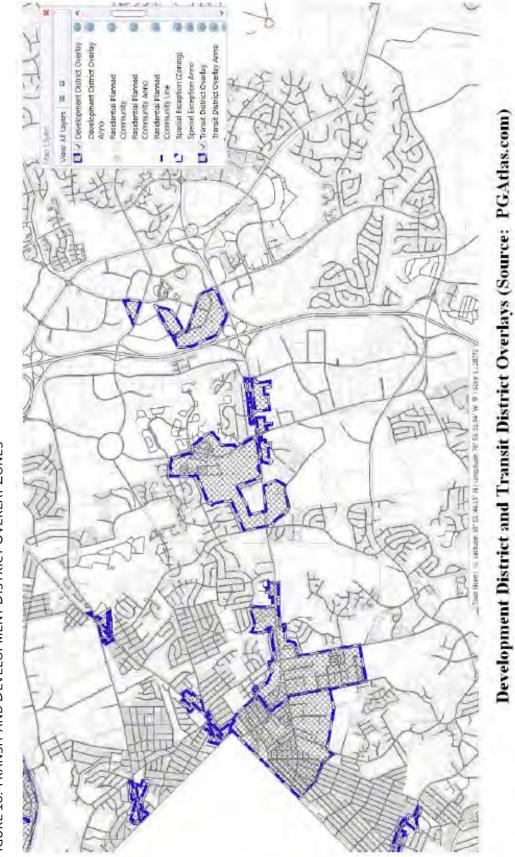
- Multiple zoning classifications and plans provide alternate design guidance for TOD areas without clear implementation guidance or consistent enforcement
- Needed refinements to the county's Complete Streets policy
- Challenges associated with adequate public facilities requirements
- Street design guidelines that limit or discourage network connectivity
- Excessive minimum parking requirements
- Lack of a mid-block crossing policy
- Capital and maintenance funding for sidewalks and lighting

This section presents a discussion of these key issues and offers suggested policy revisions or new approaches based on peer examples identified through a review of best practices. A summary of the policy review and case studies illustrating best practices to incorporate Complete Streets principles into development review and project development is presented in Appendix 2.

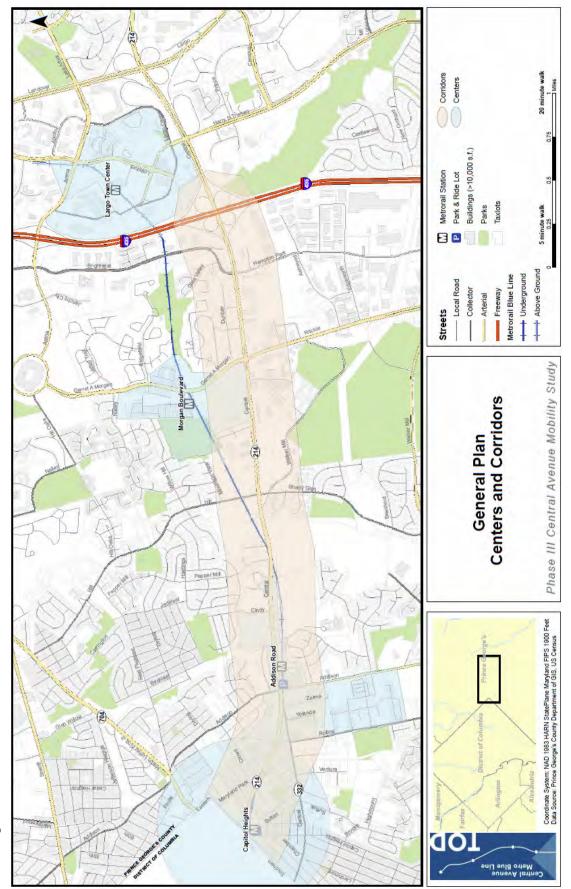
Transit-Oriented Development Zones

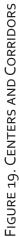
TRANSIT DISTRICT AND DEVELOPMENT DISTRICT OVERLAY ZONES

As shown in Figure 18, the Capitol Heights Metro Station area is designated as a Transit District Overlay Zone (TDOZ), while Addison Road, Morgan Boulevard, and Largo Town Center areas are designated Development District Overlay Zones (DDOZs). These overlays precede approval of the 2002 *Prince George's County Approved General Plan* and were intended to give direction to landowners and the county during the development review process and establish policies and standards to support mixed-use, pedestrian-friendly, transit-oriented neighborhoods. Both overlay zones were design-oriented, placing a great deal of emphasis on architectural detailing. However, administration of these overlays was difficult due to their complexity, and their application was inconsistent occasionally contradicting both the General Plan and applicable master plan and sector plan recommendations for land use centers and corridors.


As shown in Figure 19, the 2002 *Prince George's County Approved General Plan* designates Central Avenue as a "Corridor," the Capitol Heights and Addison Road Metro stations as "Community Centers," the Morgan Boulevard Metro Station as a "Regional Center," and the Largo Town Center Metro Station as a "Metropolitan Center." Similar to TDOZs and DDOZs, centers and corridors are designated to promote more intense development and mixed uses. Table 2 shows

the target development intensities within different center types. The General Plan does not define the extent of each center's core or edge, so the core is generally assumed to be the area within ¹/₄ mile of the Metro station, while the edge is assumed to be the area ¹/₄ to ¹/₂ mile from the station.


Land Use		Metropolitan Center		Regional Center		Community Center	
		Core	Edge	Core	Edge	Core	Edge
Residential	Min. (DU/acre)	30	20	24	8	15	4
Density	Max. (DU/acre)	N/A	40	N/A	30	30	20
Nonresidential	Min. (FAR)	2.0	0.5	1.0	0.5	0.25	0.15
Intensity	Max. (FAR)	N/A	1.5	N/A	1.5	1.0	0.30
Employment Density	Employee/acre	100	N/A	50	N/A	25	N/A


TABLE 2. DEVELOPMENT INTENSITY TAR	RGETS IN CENTERS
------------------------------------	------------------

Subtitle 27A: Urban Centers and Corridor Nodes Development Code of the Prince George's County Code was adopted in 2010. The Subtitle specifies development review and approval procedures and design regulations that implement the recommendations of the 2002 General Plan and ensure future transit-oriented, pedestrian-friendly, mixed-use development in selected centers and corridor nodes. This process includes development of regulating plans and functional overlays that identify the design and placement of buildings, public spaces, and streets within each center or node.

Complete Streets Policies

The *Approved Countywide Master Plan of Transportation* (MPOT) identifies ten complete street principles for the county (originally developed as part of the pedestrian plan for the Prince George's Plaza Transit District) and seven Complete Streets policies, one of which is to "work with the State Highway Administration and the Prince George's County Department of Public Works and Transportation to develop a Complete Streets policy."

These principles and policies provide a starting point for a future formalized, countywide Complete Streets policy that can be developed from a policy template approved on May 16, 2012, by the National Capital Region Transportation Planning Board (TPB). The Complete Streets Policy for the National Capital Region encourages TPB member jurisdictions and agencies to adopt a Complete Streets policy that includes common elements that the TPB believes represent current best practices. The TPB defines a Complete Streets policy as a directive "that ensures the safe and adequate accommodation, in all phases of project planning, development, and operations, of all users of the transportation network, including pedestrians and transit riders of all ages and abilities, bicyclists, individuals with disabilities, motorists, freight vehicles, and emergency vehicles, in a manner appropriate to the function and context of the facility." The TPB policy includes a template for local Complete Streets policies and recommends jurisdictions follow the "ten elements of an ideal Complete Streets policy" endorsed by the National Complete Streets Coalition when developing local policies. (These ten principles differ from the principles identified in the MPOT.)

Table 3 lists the "Elements of an Ideal Complete Streets Policy" identified in the TPB approved policy and those elements currently addressed in the MPOT and where additional analysis is needed. Elements of an ideal Complete Streets policy that are not addressed in MPOT are discussed in more detail below.

TABLE 3. EVALUATION OF COMPLETE STREETS POLICY ELEMENTS

TPB Recommended Policy Element	Addressed in MPOT Principles & Policy?	
Includes a vision for how and why the community wants to complete its streets.	Yes	
Specifies that "all users" includes pedestrians, bicyclists, and transit passengers of all ages and abilities as well as trucks, buses, and automobiles.	Yes	
Encourages street connectivity and aims to create a comprehensive, integrated, connected network for all modes.	Yes	
Is adoptable by all agencies to cover all roads.	Yes	
Applies to both new and retrofit projects, including design, planning, maintenance, and operations for the entire right-of-way.	Yes – new and retrofit No – project phases	
Makes any exceptions specific and sets a clear procedure that requires high-level of approval of exceptions.	No	
Directs the use of the latest and best design standards while recognizing the need for flexibility in balancing user needs.	Yes	
Directs that Complete Streets solutions will complement the context of the community.	Yes	
Establishes performance standards with measurable outcomes.	No	
 Includes specific next steps for implementation of policy, such as: revising agency procedures and regulations to reflect policy developing or adopting new design guidelines offering training for staff responsible for implementing the policy gathering data on how well streets are serving user groups 	No	

APPLICATION AND EXCEPTIONS

For Complete Street design principles to be enforced, Complete Streets policies should clearly state what types and phases of projects the policy applies to (e.g., new development, retrofit projects, design, operations, and maintenance) and a procedure for approving exceptions. Section 24-128.01 of the county Code specifies that new and redevelopment projects must comply with the county's Adequate Public Facilities Requirements (discussed below) for pedestrian, bicycle, and motor vehicle facilities. County policy does not yet address how Complete Streets principles should be applied to maintenance or operations.

The TPB Complete Streets policy template includes a draft list of inclusions and project-specific exemptions. DPW&T and other County staff should refine these lists as needed, identify a standard procedure for approving exemptions (e.g., senior manager review and approval), and incorporate this language into a revised, stand-alone Complete Streets policy. The Complete Streets project review checklists included in the "Complete Streets Strategies" section of this report present a recommended, easy-to-use standard procedure for evaluating project compliance with and/or exemption from Complete Streets requirements.

PERFORMANCE MEASUREMENT AND IMPLEMENTATION

Performance standards should be established to measure the impacts of Complete Streets and specific next steps should be identified to implement the policy. Common measures used to evaluate the success of transit- oriented development and the contribution of individual developments towards Complete Streets goals include:

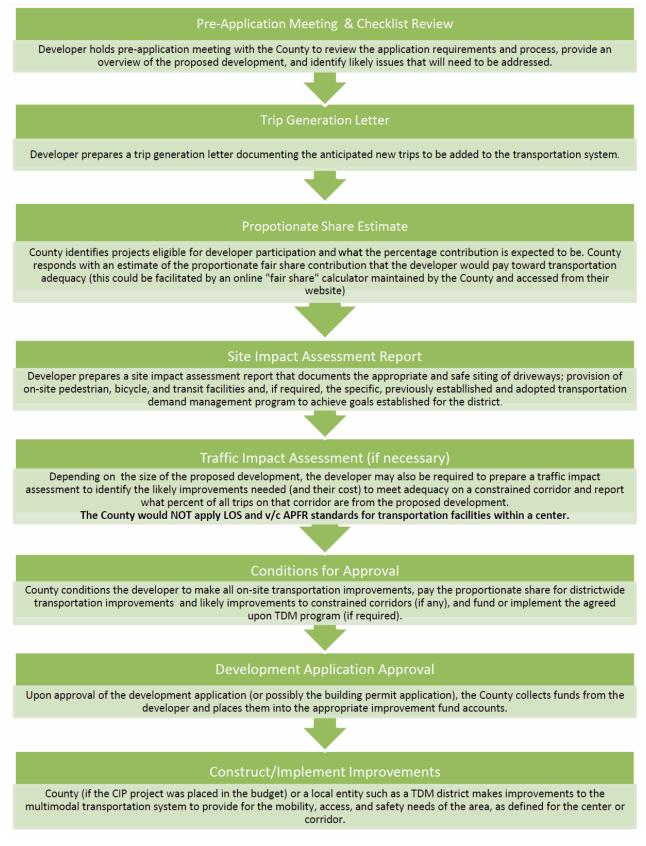
- Mode split and volumes by mode
- Safety (e.g., crashes, fatalities, and injuries by mode)
- Level of service/comfort (e.g., pedestrian, bicycle, vehicle, and transit level of service)
- Accessibility (e.g., percent of residents/employees within ¹/₄ mile of a Metro station and/or bikeway, number of destinations accessible within a ¹/₂ mile walk)
- Connectivity (e.g., average block length, percent of signalized intersections with marked crosswalks on all approaches, percent of intersections that are cul-de-sacs)

Many of these measures would require additional data-collection efforts to be evaluated consistently and to facilitate before and after evaluations. Accessibility and connectivity are recommended preliminary measures because they can be easily estimated using available GIS and census data. The county's Adequate Pedestrian and Bikeway Facilities Requirements (discussed below) also require the county to adopt a multimodal level-of-service measure. The multimodal level of service analysis presented in the "Existing Conditions" section of this report was developed using the 2010 Highway Capacity Manual MMLOS methodology and can serve as a baseline for future evaluations.

County staff, including DPW&T, Parks and Recreation, Board of Education, and DER, should be consulted to refine measures and methodologies and incorporate this language into a revised, stand-alone Complete Streets policy. The Complete Streets project review checklists included in the "Complete Streets Strategies" section of this report present draft recommended measures for evaluating development compliance, transit-oriented development, and Complete Streets requirements.

Adequate Public Facilities Requirements

The Adequate Public Facility Requirements (APFRs) in the Prince George's County Code are intended to ensure that developers and property owners contribute to the cost of providing new services and facilities needed as a result of new development, thereby preventing these costs from being borne by existing taxpayers. APFRs in the county currently require an intersection- or link-based study of auto capacity to determine the adequacy of transportation facilities. Existing APFRs in the county specify a minimum auto level of service (LOS) and volume to capacity (v/c) ratio standard for all study intersection and roadway links. In the study area, which is in the Developed Tier, these standards are LOS E and v/c = 1.0.


The APFRs have historically focused on auto travel and had unintended consequences, including limiting infill development in targeted growth areas, focusing transportation improvements on serving single- occupancy vehicles, and spurring development at the fringes of urbanizing areas where there is available vehicle capacity. For example, in centers where compact, high-density development is desired, once traffic levels exceed the LOS threshold established by the APFR (even if the traffic is regional through traffic not generated by local development/destinations), new development projects cannot move forward unless additional vehicle capacity is provided, which would contradict the goals for designated centers. These conflicts and unintended effects make implementation of high-density, transit-oriented development expensive and difficult within the county.

In June 2010, Kittelson & Associates, Inc. published the Alternative Adequate Public Transportation Facilities Ordinances and Review Procedures Study, which was prepared under a previous contract with M-NCPPC. This study recommended revisions to the APFRs to address these obstacles and enable high-density and transit-oriented development in center and corridors. The study outlines an implementation process for applying revised APFRs to enable transit-oriented development in centers, including:

- A revised site plan review process (see Figure 20).
- Guidance on transportation elements to include in a site plan review checklist and traffic impact study (see Table 4 – these elements have been incorporated into the checklists presented in the "Complete Streets Strategies" section of this report).
- Guidance on Traffic Impact Fee Assessments in centers.

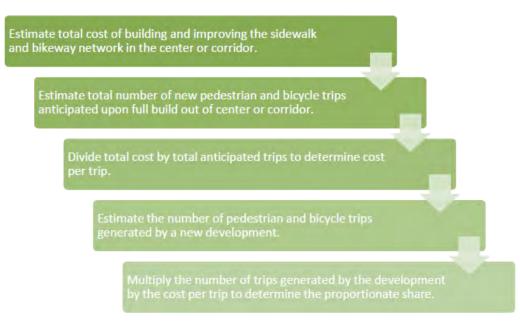
The county has begun to implement some of the recommendations of this study through the update of the Guidelines for the Analysis of the Traffic Impact of Development Proposals, tentatively known as the Transportation Review Guidelines (discussed below).

FIGURE 20. PROPOSED SITE PLAN REVIEW PROCESS FOR CENTERS

TABLE 4. ELEMENTS FOR INCLUSION IN TRANSPORTATION SITE PLAN REVIEW AND IMPACT STUDIES

Transportation Element	Description
Parking	 Number of parking spaces and parking ratio Location and number of carpool, vanpool, and/or car-sharing spaces Parking management strategies, including pricing and/or time restrictions Potential shared parking opportunities
Site Access and Street Spacing	 Location of driveways and driveway spacing, including preference for lower hierarchy streets where possible Pedestrian-friendly driveway design features Adherence to block length standards for public streets (e.g., maximum block length of 400 feet) Opportunities for shared access and/or driveway consolidation with adjacent properties Access routes for all modes, including freight/deliveries
Pedestrian Connectivity	 On-site pedestrian circulation routes Proximity of building entrances to sidewalks and transit stops Locate pedestrian generators in close proximity to safe crossings of major streets Connections to off-site pedestrian generators: schools, parks, libraries, commercial districts
Bicycle Accommodation	 Number of bike parking spaces and proximity of parking to entrances Availability of long-term bike storage (e.g. lockers) for employees and residents On-site shower and locker facilities for riders
Transit Connectivity	 Pedestrian and bicycle connections to stops Proximity of transit stops to building entrances and safe road crossings Adequate sidewalk space for passenger loading/unloading, waiting, and passing pedestrian traffic Benches, shelters, or other amenities provided at high volume stops
Trip Characteristics	 Trips generated Mode split VMT generated (pending established methodology for calculation) Trip length (pending established methodology for calculation) Transportation Demand Management plan

ADEQUATE PUBLIC PEDESTRIAN AND BIKEWAY FACILITIES REQUIREMENT


On April 24, 2012, the Prince George's County Council unanimously passed CB-2-2012, adding Section 24-128.01 Adequate Public Pedestrian and Bikeway Facilities Required in County Centers and Corridors to the Prince George's County Code. This section implements several of the recommendations of the Adequate Public Facilities for Roads (APFR) Review Study and the M-NCPPC Complete Streets policy by revising the APFR to include standards for adequacy of nonmotorized transportation facilities–sidewalks, bikeways, and pathways–in centers and corridors. It also establishes requirements for developers within centers and corridors to construct on- and off-site pedestrian and bikeway facilities and other streetscape improvements as part of any development project.

Successfully implementing the new APFR will also require the following activities:

- Identify appropriate multimodal level of service or level of comfort standards and methodologies to assess design features affecting pedestrians and bicyclists. The following provisions are recommended:
 - o Incorporate the recommended transportation elements, identified in Table 4 above, into the development review process and traffic impact study requirements.
 - o Identify LOS standards for pedestrian and bicycle facilities that are consistent with General Plan policies for corridors and centers. Alternative adequate facilities standards to LOS should be defined.
 - o Adopt the 2010 Highway Capacity Manual's multimodal level of service methodology as the preferred method of evaluating the adequacy of multimodal facilities. It is the most recent version and is consistent with the analysis conducted for the Central Avenue TOD Implementation Study.
 - o Refine and incorporate the checklists presented in the "Complete Streets Strategies" section of this report as an easy-to-use implementation tool.
- Adopt amendments and revisions to the Department's General Specifications and Standards for Highway and Street Construction and the Specifications and Standards for Highway Traffic Signals to incorporate appropriate Complete Streets principles. Based on a review of the current standards, the following revisions are recommended:
 - o Sidewalks are currently "required on both sides of arterial, collector, and industrial roadways with no exceptions," but the standard is much less rigid for residential streets. Since making it easier for residents to walk from their homes to destinations is a primary goal of transit-oriented development and Complete Streets, sidewalks should be required on both sides of residential streets in centers and corridors.
 - o The current general specifications "support design criteria that promote minimum traffic volumes and lowest possible speeds on residential streets" and provide standard design details for multiple traffic calming features. Up-to-date guidance should also be provided for applying the range of techniques to ensure consistent, appropriate application.
 - The current general specifications state that on residential streets a "discontinuous street pattern is also desirable, provided that the maximum travel distance from the furthest residence to the nearest collector road is limited to 0.5 miles and that a motorist need not make more than three turning movements." This language is inconsistent with guidance presented earlier in the guidelines, which states that "where possible, each street should be extended to intersect another street or to be intercepted by other streets... to eliminate any need for a cul-de-sac." The language encouraging discontinuous street patterns should be replaced with a recommendation to maximize connectivity for all users and to create a network that provides alternative routes for different trip types. In areas where extending streets to enhance connectivity is not feasible, pedestrian and bicycle connections should still be made.

Define how a rational nexus and rough proportionality will be determined for off-site pedestrian and bicycle improvements in order to reduce legal challenges when implementing the APFR. These issues are partially addressed by the limits Section 24-128.01 places on developer/property owner's financial responsibility for off-site improvements (e.g., improvements shall not exceed 5 percent of total development cost). However, the county should develop a methodology for estimating the pedestrian and bicycle "impacts" of developments so that they can ensure the mitigations they request of developers are in "rough proportion" to the stress their development puts on the system. Figure 21 illustrates a recommended process for estimating proportionate share costs of non-motorized system improvements.

FIGURE 21. PROPORTIONATE SHARE COST ESTIMATION PROCESS

The process presented in Figure 21 can be conducted for individual modes, or by lumping new trips generated by all modes together. CB-2 mandates that developers pay their share to construct off-site improvements. The cost-cap in CB-2 is designed to ensure that developers are not unreasonably burdened, and the rational nexus will explain the link between the development and the recommended off-site improvements.

Network Connectivity

A major transportation challenge facing the Central Avenue corridor is the suburban nature of the existing roadway network. The area is characterized by cul-de-sac residential neighborhoods, a low-level of connectivity, and a single major arterial that serves the majority of trips in and through the study area. As discussed above, the current county roadway design standards continue to encourage a discontinuous street pattern in residential areas, making transit-oriented development difficult to achieve.

Revising existing policies and design standards to maximize connectivity for all modes supports transit- oriented development in multiple ways:

• Provides alternative routes for local and regional trips, removing traffic from Central Avenue and reducing pressure to continue expanding arterials to meet APFR requirements. Alternative parallel routes to Central

Avenue also provide more attractive, lower speed and volume routes for pedestrians and bicyclists. These routes may encourage a larger number of people to walk and bike who would not be comfortable traveling along a high-speed, high-volume arterial.

- Encourages shorter trips and carpooling. A well-connected network provides direct routes between origins and destinations, making it more convenient for residents and visitors to walk or bike to destinations. Vehicle trip lengths can also be reduced due to availability of more direct routes.
- Increases pedestrian safety. Pedestrians generally take the most direct route between destinations.
 Providing short (300-500 foot) blocks and a high level of connectivity makes it more likely that pedestrians will cross at intersections, as opposed to jaywalking, which may increase pedestrian safety.

Revisions to the county's street construction standards should include the establishment of a maximum block length of 500 feet in order to ensure connectivity for all modes and improve access to transit.

Parking Requirements

The Prince George's County Code establishes minimum off-street parking requirements for different land uses within the county. In comparison to similar urban areas nationwide, these standards are exceptionally high. The procedures outlined in the code for establishing reduced parking requirements in centers and select zones are also complicated and provide only a minimal reduction.

Excessive parking requirements conflict with transit-oriented development in multiple ways:

- The space that must be dedicated to parking makes it difficult to achieve transit-supportive building densities. Structured parking can minimize the footprint of parking, but would have low utilization and create a cost disincentive for developers.
- Large expanses of surface parking reduce the walkability of an area by making destinations farther apart and creating an unattractive pedestrian environment.
- Readily available parking encourages the majority of trips to continue being made by personal vehicle. In the absence of a parking pricing strategy, the incentive to walk, bike, or take transit is dramatically reduced.

The majority of jurisdictions that have successfully implemented transit-oriented development have either replaced parking minimums with parking maximums or adopted significantly reduced parking requirements for all uses within designated areas. In the study area, the 2000 Approved Sector Plan and Sectional Map for the Addison Road Metro Station and Vicinity (ARM) and the 2008 Approved Capitol Heights Transit District Development Plan and Transit District Overlay Zoning Map Amendment (CHTTP) both recommend parking maximums for station areas, but these maximums do not appear to have been applied and are not referenced in the County Code where developers look for parking guidance when developing site plans. It is recommended that the county adopt parking maximums for centers and corridors as an amendment to Subtitle 27A of the county Code. The parking maximum code used by Portland, Oregon in areas served by transit could serve as a model for the county when developing code language (see case study in Appendix 2).

Midblock Crossings

The Prince George's County DPW&T Street Construction Review Checklist currently states that midblock crossings are not permitted, effectively limiting the county's ability to improve pedestrian connectivity and support transit-oriented development in some areas. Given the long block lengths in the study area, locations of concentrated pedestrian activity, and limited crossing opportunities along Central Avenue, pedestrians are often faced with the option of jaywalking or walking far out of their way to reach a marked crossing. In most cases, pedestrians will choose to jaywalk, which creates conflicts between pedestrians and motorists who do not anticipate pedestrians in unmarked crossing locations.

Midblock crossings at select locations with high crossing demand (e.g., Metro stations, bus stops, trail crossings, and school or park entrances) can encourage pedestrians to cross at designated areas, increase safety, and make walking and transit more attractive travel options. Delay incurred by vehicle traffic at midblock crossings is frequently cited as a negative impact of midblock crossings; however, within transit-oriented areas, pedestrian level of service should be prioritized and, as shown in the "Existing Conditions" section of this report, adequate vehicle capacity is not a concern in the study area.

To provide additional flexibility to address pedestrian safety and connectivity needs, the county should adopt a midblock crossing policy that provides specific criteria for appropriate use of midblock crossings (e.g., distance from nearest signal, proximity of key destinations, traffic volume, etc.). The midblock crossing policy adopted by Washington County, Oregan could serve as a model to the county when developing this policy.

Sidewalk Funding and Maintenance

A major challenge to implementing Complete Streets policies in the study area is the need to retrofit existing streets that were constructed without sidewalks or where sidewalk widening and repair are needed. Prince George's County does not currently have a dedicated funding source for sidewalk retrofit projects or sidewalk maintenance. CB-2-2012 provides one mechanism for the county to leverage new development to complete the network and serve growing pedestrian demand. Another strategy used by some jurisdictions nationwide is to adopt code stating that adjacent property owners are responsible for maintaining all sidewalks in the public right-of-way adjacent to their property.

Policy Recommendations

COMPLETE STREETS

- Refine the TPB list of project types that are included and exempted from Complete Streets requirements.
- Refine the checklists in the "Complete Street Strategies" section of this report and implement them as a standard procedure for approving exemptions and evaluating compliance with Complete Streets principles.
- Establish performance standards to measure the impacts of Complete Streets policies. Accessibility and connectivity measures are recommended for short term adoption. MMLOS using the 2010 Highway Capacity Manual methodology is also recommended, using the analysis conducted for the Central Avenue TOD Implementation Plan as a baseline.

- Incorporate the recommended transportation elements identified in Table 4 into the development review process and traffic impact study requirements.
 - o Identify LOS standards for pedestrian and bicycle facilities that are consistent with General Plan policies for corridors and centers. Alternative adequate facilities standards to LOS should be defined.
 - o Adopt the 2010 Highway Capacity Manual MMLOS methodology as an approved tool to evaluate the adequacy of multimodal facilities.
 - o Refine and incorporate the checklists presented in the "Complete Street Strategies" section of this report as an easy-to use implementation tool.
- Adopt amendments and revisions to the DPW&T's General Specifications and Standards for Highway and Street Construction and the Specifications and Standards for Highway Traffic Signals to incorporate appropriate Complete Streets principles.
 - o Require sidewalks on both sides of residential streets.
 - o Provide additional guidance on where traffic-calming treatments are, or are not, appropriate.
 - o Replace language encouraging discontinuous street patterns with a recommendation to maximize connectivity for all users. In areas where extending streets to enhance connectivity is not feasible, pedestrian and bicycle connection should still be made.
- Develop and adopt a methodology similar to that presented in Figure 21 to estimate the pedestrian and bicycle "impacts" of development so that mitigations requested of developers are in "rough proportion" to the stress their development puts on the system.

PARKING REQUIREMENTS

• Amend Subtitle 27A to include parking maximums for centers and corridors.

MIDBLOCK CROSSINGS

• Adopt a midblock crossing policy that allows midblock crossings in limited circumstances and provides specific criteria for appropriate use of midblock crossings (e.g., distance from nearest signal, proximity of key destinations, traffic volume, etc.). This policy should be developed with concurrence from SHA and DPW&T.

SIDEWALK FUNDING AND MAINTENANCE

• Adopt a policy requiring property owners to maintain sidewalks adjacent to their property.

Section 6 Complete Streets Strategies

COMPLETE STREETS STRATEGIES

Purpose

The purpose of this section is to outline strategies for implementing Complete Streets policies in the study area. These strategies recommended include:

- Multimodal complete street and trail typologies
- Typical sections
- Design guidelines
- Network enhancements
- Implementation checklists

Together, these strategies establish the basis for a future Transportation Network Functional Overlay (TNFO) for the study area. In coordination with a regulating plan, the TNFO will provide a mechanism for implementing transit-oriented development with concentrations of medium- to high-density and mixed uses, as well as a complete, well-connected network serving pedestrians, bicyclists, motor vehicles, and transit.

Complete Street Typology & Typical Sections

Complete Streets treat roadways as multi-purpose public space and are designed to improve access for all modes, rather than prioritizing automobile throughput. The existing roadway functional classification system, summarized in Figure 5, is based primarily on vehicle mobility, access, volumes, and speeds. As a result, roadways are frequently designed from the "inside-out," beginning with auto facilities and allocating remaining right-of-way, if any, to other modes. Successfully implementing Complete Streets will require a new roadway typology that is multimodal, considers adjacent land uses, desired streetscape elements, and encourages design from the "outside-in." This section presents a recommended "complete street typology" for the study area, which could be adapted for application to all of Prince George's County.¹

The new street types are intended to inform planning decisions when altering existing streets and when reviewing new or improved streets as part of development projects. The typical sections and design guidance presented for the new street types are not intended to create strict standards or make any existing roads "non- conforming." Instead, they provide guidance for new roadways built as part of new development or redevelopment, and identify desirable roadway elements to complement adjacent land uses when reconstructing existing roadways, as right-of-way allows. The complete street typology is consistent with the MPOT Complete Streets policy and is based upon existing DPW&T and M-NCPPC functional classification standards.

The five Complete Streets classifications described below identify the desirable roadway elements and design priorities for different land use contexts. A typical cross section is provided for each classification to show a representative example of what the implemented street type could look like. The exact combinations and widths of the individual streetscape elements should be designed to meet the specific context and apply engineering judgment.

Changing DPW&T standards or adopting supplementary guidance is a multi-year process, and not every planning effort should recommend different design standards.

Functional Classification	Sample of Typical Features
Arterial Road (Urban and Rural)	 4 to 6 through-travel lanes Median with left-turn lane Prohibits on-street parking Hiker/biker trails in urban areas only
Major Collector Road (Urban and Rural)	 4 through-travel lanes Median (may be painted) with left-turn lane Generally prohibits on-street parking Hiker/biker trails or bike lanes in urban areas only
Collector Road (Urban and Rural)	 Painted center line 4 through lanes Allows parking Hiker/biker trails or bike lanes in urban areas only
Urban Commercial and Industrial Road	 Painted center line 4 through lanes Allows for frequent turning movements Allows for parking Requires curbed roadside and large curb radii May include sidewalks
Primary Residential Road (Urban and Rural)	 Serves adjacent properties with clear two-way roadway Low speeds with interruptions at intersections and driveways Painted center line Restricts on-street parking and turns for driveways Urban areas only: includes sidewalks
Secondary Residential Road (Urban and Rural)	 Serves adjacent properties with clear one-lane roadway Few parking restrictions Urban areas only: includes sidewalks

• Neighborhood Greenways form a grid of pedestrian- and bicycle-friendly streets along primarily residential blocks. Street widths are generally narrow and allow on-street parking. Neighborhood greenway streets include traffic-calming elements such as traffic circles, landscaped buffers, chicanes, or curb extensions in order to discourage through motor-vehicle traffic and lower vehicle speeds and volumes. As a result, neighborhood greenways are comfortable walking and bicycling routes for residents with a wide range of abilities. A typical neighborhood greenway cross section is shown in Figure 22.

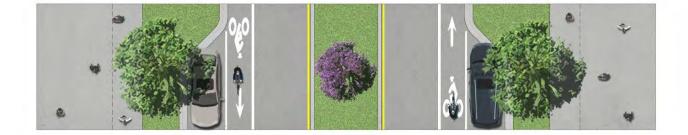
FIGURE 22. TYPICAL NEIGHBORHOOD GREENWAY CROSS SECTION

•	WIDTH VARIES	BUFFER .	TRAVEL/BIKE/PARKING	BUFFER	SIDEWALK .	
		SIDEWALK				

Neighborhood Commercial Streets front residential and neighborhood-serving commercial uses, mixed both vertically and block-by-block. Buffer areas and sidewalks are wide to accommodate pedestrians and street furniture. Restricted curb cuts maintain the integrity of frontage space. Single lanes and on-street parking with bulb-outs (curb extensions) will slow vehicle speeds and encourage shared space with bicycles. As neighborhood hubs, these streets should be designed to facilitate community events such as farmers markets and festivals. A typical neighborhood commercial street cross section is shown in Figure 23.

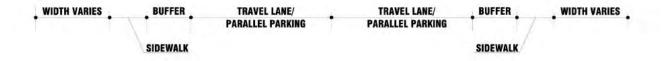
FIGURE 23. TYPICAL NEIGHBORHOOD COMMERCIAL CROSS SECTION

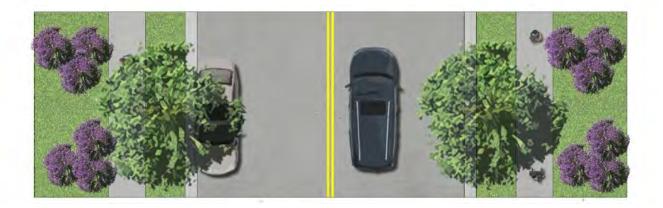
SIDEWALK	BUFFER	PARKING/	TRAVEL LANE	TRAVEL LANE	PARKING/	BUFFER	SIDEWALK
		BULB-OUT			BULB-OUT		



• Avenues form a large-scale grid of streets that provide multimodal connections between neighborhoods. They are characterized by similar surrounding land uses and streetscape features as Neighborhood Commercial streets, but have greater densities and/or higher traffic volumes that require the addition of medians, center turn lanes, and dedicated bicycle lanes. These streets form important links between neighborhoods and are often signalized where they intersect with other avenues, neighborhood boulevards, and regional boulevards. A typical Avenue cross section is shown in Figure 24.

FIGURE 24. TYPICAL AVENUE CROSS SECTION


WIDTH VARIES MEDIAN/CENTER TRAVEL LANE BIKE PARKING/ SIDEWALK BUFFER BIKE TRAVEL LANE BUFFER SIDEWALK PARKING/ LANE BULB-OUT TURN LANE LANE BULB-OUT



• **Industrial-Commercial Streets** serve manufacturing and large commercial uses. With low land use densities and generally low non-motorized traffic volumes, the streetscapes on these streets should soften the often intense land uses and provide on-site stormwater treatment. These streets often form important links in bicycle routes. Areas with this street type typically feature wide and frequent driveway access points. The width, length, and number of driveway access points should be limited within a multimodal context and continue to serve motor vehicle access needs. A typical industrial-commercial street cross section is shown in Figure 25.

FIGURE 25. TYPICAL INDUSTRIAL-COMMERCIAL STREET CROSS SECTION

• Neighborhood Boulevards serve mixed land use areas similar to avenues, but with higher densities and higher traffic volumes that would necessitate two lanes in each direction. Neighborhood boulevards have bicycle lanes and may have on-street parking on one or both sides depending on the immediate adjacent land use. A typical neighborhood boulevard cross section is shown in Figure 26.

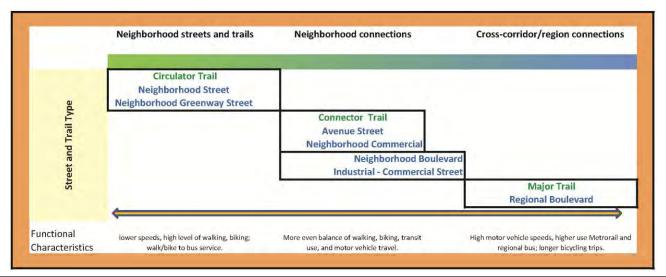
FIGURE 26. TYPICAL NEIGHBORHOOD BOULEVARD CROSS SECTION

• **Regional Boulevards** serve regional destinations, through vehicle, and transit trips. The right-of-way accommodates the highest traffic volumes and high-capacity transit routes, and features the most widely-

spaced traffic signals located only at intersections with other arterials and connectors. Both right- and left-dedicated turn lanes facilitate vehicle movements. There is generally no on- street parking, and unsignalized intersections with avenues tend to be right-in/right-out and may feature pedestrian crossing amenities such as HAWK signals. The high volumes of all users encourage separated facilities by mode, including transit priority lanes and shared-use paths for bicycles and pedestrians. The only location appropriate for this street typology in the study area is Central Ave east of Cabin Branch Road. A typical regional boulevard cross section is shown in Figure 27.

HAWK are High-Intensity Activated Crosswalk signals used to stop road traffic and allow pedestrians to cross safely. They are much more advanced than the traditional pedestrian crosswalk signals.

FIGURE 27. TYPICAL REGIONAL BOULEVARD CROSS SECTION


Trail Typology

In addition to the street network, trails will provide vital links for pedestrians and bicyclists in the future study area transportation network. Trails are shared-use facilities that are separated from the roadway and may be located on access ways or easements outside of the street right-of-way. Trails serve both recreation and transportation functions and may be constructed and managed by DPW&T or Parks and Recreation. The two types of trails identified to fill local and regional gaps in the non-motorized transportation system are below:

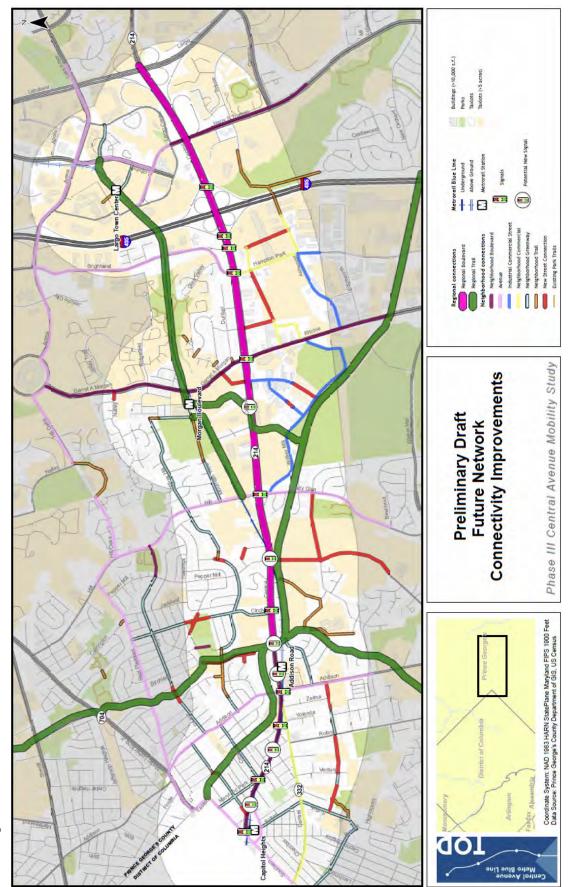
- Neighborhood Trails provide connections between destinations or trail types and are generally short (less than one mile) in length. Neighborhood trails can also provide internal, non-motorized circulation networks within large developments, parks, or campuses. Minimum total width for neighborhood trails is eight feet, though ten foot or wider widths are preferable where space is available and where usage is expected to be high. Separate trail surfaces may be provided for pedestrians and bicycles, or striping may be used to distinguish areas for different users and directions of travel. If located along a roadway, neighborhood trails should be set back a minimum of two feet, with a preferred setback of five feet.
- **Regional Trails** are generally long (greater than one mile) linear trails that connect regional destinations and facilitate long-distance, non-motorized trips. These trails are primarily located outside the public right-of-way and provide a comfortable walking and biking environment with few interruptions due to intersections. Regional trails experience a fairly equal split between commuter and recreational use. Minimum total width for these trails is 12 to 14 feet, though wider widths should be provided where space is available and usage is expected to be high. Wider trails can accommodate two center bicycle lanes, each bordered by a 5 foot pedestrian lane, and 2 to 5 foot buffers on the roadway side.

Complete Network Recommendations

Taken together, the street and trail types described above establish a framework for implementing a complete network within the study area, serving transportation needs within neighborhoods, between neighborhoods, and across the corridor. Figure 28 illustrates the function characteristics of each of the new street and trail types.

FIGURE 28. RECOMMENDED STREET TYPES AND FUNCTIONAL CHARACTERISTICS

Figure 29 shows the proposed application of the new street and trail types to the existing transportation network. The map also shows the locations of proposed new street and trail connections to increase connectivity for all modes and develop a complete network. The future multimodal network is recommended in order to improve overall safety, mobility, and access within the corridor.


Constraints of the existing transportation network are evident when looking at existing and potential walking access to Metrorail stations, illustrated in Figures 7 and 8. Future development, particularly TOD adjacent to each of the stations, presents an opportunity to improve access for all modes with several key transportation network elements:

- New walking and bicycling facilities along existing streets
- New streets and trails providing circulation within and connections between developments
- New trails that connect neighborhoods directly to Metrorail stations and/or the regional trail network

The proposed network map is intended to illustrate conceptual future connections and does not represent precise alignments. Proposed street and trail types are intended to provide general guidance on future multimodal facility function and cross section. Detailed design elements (e.g., crossing treatments, lighting, and landscaping) are discussed in more detail below and should be selected to suit individual contexts using engineering judgment.

Complete Street Design Treatments

The street and trail types discussed above provide a general overview of the future function and cross section of facilities. In order to integrate these facilities with surrounding land uses and create a safe, comfortable network for users, detailed design treatments will need to be selected and incorporated into the design of streets. Table 5 presents an overview of traffic calming, pedestrian, and bicycle treatments that support implementation of Complete Streets and TOD. Specific design treatments should be selected to suit individual contexts using engineering judgment.

TABLE 5. OVERVIEW OF COMPLETE STREET DESIGN TREATMENTS

Treatment	Description	Advantages	Disadvantages
Traffic Calming T	Freatments		
Reduced Curb Radii	Reconstructing a street corner with a smaller radius to reduce vehicle turning speeds.	 Forces sharper turn by right-turning motorists. Improves safety of pedestrians by reducing crossing width and slowing motorists. Reduces speed of right- turning motorists. 	 Space may not be available. Can be expensive. Can make access more difficult for buses and large trucks.
Narrow Travel Lanes	Restriping of existing travel lanes to reduce width.	 Slows traffic. Provides more space for bicyclists and possible bicycle lanes. 	 Possible increase in vehicle-vehicle crashes.
On-Street Parking	Full-time parking provided adjacent to the curb or just beyond a buffered bicycle zone (protected bicycle lanes).	 Increases safety by placing a physical barrier between moving vehicles and pedestrians. Reduces the speed of traffic traveling adjacent to the parked vehicles. Provides parking. 	 Can be dangerous for bicyclists riding in door zone. Ineffective at reducing speeds if travel lane is very wide. Reduces sight lines for motorists entering the street from driveways.
Rumble Strips	Pavement surface treatments intended to cause drivers to experience vehicle vibrations signaling the drivers to slow down. Best used with other traffic calming treatments.	 Reduces speeds. Low cost. 	 Vibration noise created may be inappropriate in residential areas. Perceived more as a warning to slow down than a physical measure that forces slower speeds. Less effective over time. Can create a hazard for cyclists.
Speed Humps	Speed humps are wide, rounded, mountable obstructions installed on the pavement surface across travel lanes, intended to cause vehicles to slow.	 Inexpensive. Very effective in slowing travel speeds. Easily navigated by bicyclists. 	 May be considered loud or noisy to nearby residents. Forces emergency vehicles to slow down. Inappropriate on streets with bus traffic due to rider comfort & reduced travel speeds. Creates a high-speed traffic hazard.

Treatment	Description	Advantages	Disadvantages
Speed Tables	Speed tables are similar to speed humps except they have a flat- top. Generally wider than speed humps, gentler on vehicles, and generally used on higher order roads than bumps or humps because they allow a smoother ride and higher speeds.	 Slows traffic. Smoother ride than humps and bumps. Not as effective in reducing speeds as humps and bumps. More applicable for higher order roads (collectors). Compatible with bicycle use, particularly on low- volume streets. 	 Higher design speed. Can be expensive if used with textured materials. May be considered loud or noisy to nearby residents.
Chicane	A series of fixed objects, usually extensions of the curb, which alter a straight roadway into a zigzag or serpentine path to slow vehicles. Can also be created by alternating on-street parking between sides of street.	 Reduces speeds of motorists. Easily negotiated by larger vehicles such as buses, trucks, and fire trucks. Noise is not as common as with speed humps or rumble strips. Potential to increase trees, landscaping and water runoff treatment. 	 Reduces on-street space for parking. Maneuvering can be difficult for larger vehicles such as buses, trucks, and fire trucks. Potential for motorist collision with the physical chicane. Needs landscape maintenance.
Choker	Narrowing of a street, often mid-block, and sometimes near an intersection. May be done with curb extensions, landscaping or edge islands in the street. They can form safe crossings if marked as crosswalks. Chokers can leave the street section with two narrow lanes or be taken down to one lane, thus requiring approaching drivers to yield to one another.	 Reduces speeds and volumes of motorists. Shortens crossing distances for pedestrians if used at mid-block crossings. Provides pedestrian refuge area. Can reduce traffic volumes. 	 Potential for motorist collision with the physical choker. Reduces on-street space for parking. Compatible with bicycling only when specified space is provided. Design challenges if used on narrow streets without on-street parking. May divert traffic to alternate streets.

Treatment Raised Intersection	Description The entire area of an intersection is raised above normal pavement surface level to reduce vehicle speed through the intersection and provide a better view of pedestrians and motorists in the intersection.	 Advantages Reduces speeds through intersections. Reduces red light running at high speeds. Calms two streets at once where collisions are most prevalent. 	 Disadvantages Potential drainage issues. Less effective in reducing speeds than humps, tables, or raised crosswalks. Expensive.
Intersection Safe Prohibit Right- Turns on Red	ety Enhancements Mounted sign eliminates the right of motorists to make a right turn at a red light. Can be used full-time or under restricted time	Reduces conflicts between motorists and pedestrians.	 Reduces time motorists have to make a right turn. Potential vehicle queuing.
Signal Timing Modification	intervals. Adjustments of existing signal timings to more readily accommodate all modes. Couldinclude reducing the amount of green time to decrease the amount of time pedestrians wait at signals.	 Improves conditions for pedestrians. Improves overall safety of intersection. 	Improving conditions for one mode is often done at the expense of others (e.g., giving more green time to pedestrians often means motorists receive less green time).
Leading Pedestrian Interval	Pedestrians are given advance time to begin crossing at the crosswalk before conflicting vehicles start moving.	 Puts pedestrians well into the crosswalk and more visible before vehicles begin moving into the crossing zone. Improves pedestrian safety. 	 Reduces green time for conflicting vehicle movements. Can add to delays at highly congested intersections.
Push Button Retrofit	Signs above the pedestrian push- button that indicate direction of crossing. "Confirm" press buttons acknowledge activation through a light or sound after called by a pedestrian.	 Confirm press buttons have been shown to increase the number of pedestrians using the push-button. Pedestrians more likely to wait for the Walk phase signal. 	Expense of implementing comprehensively.

Treatment	Description	Advantages	Disadvantages
Pedestrian Countdown Signal	Walk/Don't Walk pedestrian signals with countdown signal informing pedestrians of the time remaining to cross the street.	• Fewer pedestrians cross the street late in the countdown as compared to signal heads with only the Flashing-Don't-Walk light.	Expense of implementing comprehensively.
Protected Left-Turn	Allows left-turning vehicles a protected movement (i.e., no conflicting movements), generally involving the installation of a left- turn arrow.	 Removes conflicts between left-turning vehicles and oncoming, through- movement vehicles. Improves left-turning operations. 	 Less green time for through and right-turn movements. Less green time for pedestrian crossings.
Reduce or Add Lane; Modify Existing Geometry	Modify the existing intersection geometry to respond to conditions including reducing pedestrian crossing exposure to traffic, adding or eliminating a traffic movement, creating space for the type and level of pedestrian activity, reducing speed of turning vehicles.	 Improve safety or capacity according to situation. Increase or decrease user delay according to situation. 	 Lack of right of way and/ or physical space. High cost and long timeframe.
Roundabout	Raised circular island intersection treatment where all entries are yield controlled, circulating vehicles have the right of way, and pedestrian access is allowed only across the roundabout legs.	 Yield control reduces wait times, thus getting traffic more steadily through the intersection. Reduces the severity of crashes relative to signalized intersections. Reduces conflict points compared to a signalized intersection. 	 Requires substantial right of way for construction Pedestrians are not provided with a protected signal phase where all traffic is stopped; rely on driver courtesy and respect for pedestrian right-of-way in the crosswalk. High cost.

Treatment	Description	Advantages	Disadvantages
Pedestrian Cross	ļ	Auvantages	Disadvantages
In-Street "Yield for Pedestrian" Sign	Signs placed in the middle of crosswalks to increase driver awareness of pedestrians and the legal responsibility to yield right-of-way to pedestrians in crosswalk.	 Increases the number of motorists that yield to pedestrians in the crosswalk. Reinforces the right of pedestrian in the carriage- way. 	 If used too often, motorists have a tendency to ignore the signs.
High-Visibility Crosswalk	Clear, reflective roadway markings and accompanying devices at intersections and priority pedestrian links, located only where motorists should expect pedestrians with sufficient sight distance and reaction time with prevailing travel speeds.	 Warns motorists of potential for pedestrians. Designates a preferred location for pedestrians. Maryland law requires motorists to yield to pedestrians in or near the vehicle's path in marked crosswalks. 	 Most effective with other traffic control (signals, stop signs) or physical treatments (bulb outs) that help to reinforce crosswalks and support reduced vehicle speeds. Motorists may ignore.
Raised Crosswalk	A pedestrian crossing area raised above street grade to give motorists and pedestrians a better view of the crossing area. A raised crosswalk is essentially a speed table marked and signed for pedestrian crossing.	 Provides better view for pedestrians and motorists. Slows motorists travel speeds. Broad application on both arterial & collector streets. 	 Can be difficult to navigate for large trucks, buses, and snow plows.
Bulb-out/Curb Extension	An extension of the curb or the sidewalk into the street (in the form of a bulb), usually at an intersection, that narrows the vehicle path, inhibits fast turns, and shortens the crossing distance for pedestrians.	 Shortens crossing distances for pedestrians. Reduces motorist turning speeds. Increases visibility for both motorists and pedestrians. Enables permanent parking. Enables tree and landscape planting, & water runoff treatment. 	 Can only be used on streets with unrestricted on- street parking. Physical barrier can be exposed to traffic. Greater cost and time to install than high-visibility crosswalks.

Treatment	Description	Advantages	Disadvantages
Raised Median Island/ Pedestrian Refuge Area	Signs with a pedestrian- activated "strobe-light" flashing pattern that attracts attention and notifies motorists that pedestrians are crossing.	 Typically increases motorists yielding behavior. Pedestrians may not activate flashing light. 	 Motorists may not understand flashing lights.
Pedestrian Hybrid Signal (HAWK)	Pedestrian-activated signal, unlit when not in use, begins with a yellow light alerting drivers to slow, and then a solid red light requires drivers to stop while pedestrians have the right-of-way to cross the street.	 A very high rate of motorists yielding to pedestrians. Drivers experience less delay at hybrid signals compared to other signalized intersections. 	 Expensive compared to other crossing treatments. Requires pedestrian activation.
Bicycle Accomm	odations		
Wayfinding	Signs directing pedestrians and bicyclists towards destinations in and routes through the area, typically including distance and average walk/cycle times.	 Eases navigation for residents and visitors by bicycle. Provides guidance to destinations from streets and along multi-use trails. Offers another indication to motorists of the presences of bicycles. 	 Maintenance and vandalism.
Bicycle Sharrows	A shared-lane marking, or sharrow, is a pavement marking used where space does not allow for a bike lane typically indicating that bicycles have equal right to the travel lane. Sharrows remind motorists of the presence of bicycles and indicate to cyclists where to safely ride within the roadway.	 Reduces wrong-way and sidewalk riding. Improves cyclists positioning in the roadway. Informs motorists of presence of bicyclists. Marks streets without adequate space for bike lanes. 	 Pavement marking maintenance. Not as protected as a bike lane.

Treatment	Description	Advantages	Disadvantages
Bike Lanes	The area of roadway designated for non- motorized bicycle use, separated from vehicles by pavement markings.	 Improves safety and comfort by increasing the visibility and awareness of cyclists. Designates carriage-way space for bicyclists. 	 May still conflict with motorists. Motorists may illegally park in bike lane.
Bike Box	Marked area in front of the stop bar at a signalized intersection that allows cyclists to correctly position themselves for turning movements during the red signal phase by pulling ahead of the queue.	 Decreases conflicts and crashes between cars and bicycles. Separates bicycles from cars at the intersection. 	 Extensive public education required. Pavement marking maintenance and costs.
Bicycle Boulevard/ Neighborhood Greenway	Low volume and low speed streets that have been optimized for bicycle travel through treatments such as traffic calming and traffic reduction, signage and pavement markings, and intersection crossing treatments.	 Converts well-connected streets prone to cut- through traffic to streets well-suited for bicycle transportation. Allows through movements for cyclists while discouraging similar through trips by non-local motorized traffic. Creates a comfortable, low-volume, low-speed space for bicyclists and pedestrians. 	 Some treatments more expensive than others. In areas with few alternative routes, reduces those that can relieve traffic during peak travel times.
Cycle Track/ Protected Bike Lane	An exclusive bike facility physically separated from vehicle travel lanes, parking lanes, and sidewalks. Can be one-way, two- way, at street level, at sidewalk level, or at an intermediate level.	 Buffer provides higher level of safety than bike lanes. Reduces risk of "dooring" compared to a bike lane. Attractive to a wider spectrum of the public than bike lanes. 	 Potential conflicts at intersections. Can be expensive. Requires more space than bike lane

Treatment	Description	Advantages	Disadvantages
Shared-Use Pathway/ Sidepath	Paved pathways parallel to but away from the carriage-way and out of the path of turning vehicles designed with space adequate for safe use by both pedestrians and bicyclists. Appropriate for roads parallel to rail track, waterway or other conditions with infrequent cross traffic.	 Separates bicyclists from vehicle traffic. Combination of pedestrians and bicyclists requires less space than separate facilities for each. 	 Needs adequate space to accommodate buffer from street and width to allow the passing of bicyclists and pedestrians. Bicycle and pedestrian conflicts.
Bicycle Parking	Devices and/or areas that allow secure bicycle parking, often located at areas of high bicycle and pedestrian traffic such as office and industrial areas, shopping centers, schools, and multi-use trails. Can be provided on a curb extension or in on-street parking spaces.	 Provides a secure location to store and lock bicycles. Locations are generally very close to and visible from the point of interest. Relatively inexpensive and easy installation. Encourages community bicycle use. 	 Requires space in potentially busy area. May remove an on-street parking space.

Complete Street Checklist

A Complete Streets Checklist is a useful tool for evaluating how each travel mode has been considered and accommodated in the process of planning or designing projects that are within or that impact the public right-of-way. The checklist approach also provides a simple means for assuring that the new adequate pedestrian and bicycle facilities requirements are incorporated into the design review process.

The draft 2012 Prince George's County *Transportation Review Guidelines* include draft checklists for evaluating trip and parking credits for which a proposed development is eligible. The checklist presented below suggests potential revisions to these checklists and additional questions that could be added in order to make the checklists applicable to other projects such as scheduled repaying/restriping, or capital improvement projects.

The checklist included below is based on the draft 2012 Prince George's County *Transportation Review Guidelines*, approved MPOT Complete Streets principles, and the Complete Streets design and policy recommendations for Prince George's County discussed in the "Policy and Design Review" section of this report. The checklist is based on several assumptions about implementing Complete Streets and TOD:

- <u>Street and trail types are part of a transportation-land use relationship inherent in all development projects,</u> <u>especially TOD</u>. No project is a silo. Roadway reconstruction affects existing and prospective land uses, and those land uses influence the roadway cross-section.
- <u>All projects, regardless of scope or owner (public/private), will contribute to creating the complete network</u>. A complete network emerges with each roadway or development project, especially when attention is given to how a project fits into the network vision.
- Over time, a complete network will be established.
- <u>Travel within the corridor can be shifted from primarily motor vehicle to a significant proportion of walking,</u> <u>bicycling, and transit trips</u>. Loosely based on the "build it and they will come" theory, improvements to walking, biking, and transit transportation make these modes more attractive and possible to use.

The checklist addresses the following aspects of each project:

- General Information includes the type of project, land use, and project scope.
- Site Context and Opportunities addresses the surrounding land uses, destinations, and transportation facilities.
- **Complete Streets Assessment** evaluates the project design in relation to the "four D's"–density, diversity, design, and destinations–and its ability to support TOD and Complete Streets.

In order for the checklist to effectively influence roadway and site design, it should be used by public agencies in all stages of project development, including development review, permit approval, street project design, planning, and maintenance processes.

Complete Streets Project Review Checklist GENERAL PROJECT INFORMATION 1. Project Name 2. Design Completion (%)
3. Project Area (precise street limits and scope)
4. Project Type: 🗆 Roadway Maintenance 🗆 Capital Improvement Project 🗆 Private Development
5. Project Description
6. Dates Started/Anticipated to Start: Planning _/ _/ Preliminary Design _/ _/ Final Design _/ _/ Construction _/ _/
7. Lead Agency or Entity:
8. Primary Contact:
9. Partner Agencies or Entities:
SITE CONTEXT & OPPORTUNITIES 10. Street Type: Identify the classification of the street(s) impacted by the project using the Proposed Complete Street Network map.
11. Land Use & Character: Describe the character of the project area, including predominant land uses, densities, and any historic districts or special zoning districts present. Describe the compatibility of the proposed design with these characteristics.
12. Trip Generators & Attractors: List any major sites, destinations, and trip generators within one half mile of the project area, including: transit stops with service frequency of at least 20 minutes during peak periods; public facilities (e.g., schools, libraries, parks, or post offices); recreational community, or cultural facilities; retail centers greater than 20,000 sf GFA; employment centers greater than 40,000 sf GFA; and existing sidewalks, paths, bike lanes, or cycle tracks. Describe how the proposed design provides connections to these sites.
13. Travel Patterns & Conditions: Describe existing and desired future walking, bicycling, transit, motor vehicle, and freight conditions within the project area. Describe how the proposed design addresses these conditions, including volumes, safety, comfort, connectivity, and quality of the street environment.
14. Opportunities : Identify opportunities to address safety, mobility, and access within the larger corridor.

Safety	Mo	bility (within	the corri	dor)	Access to rail and bus service
Example: Road project will install signal at	Example:	Re-striping	project	will stripe	Example: Development project will install
intersection with companion bus stops.	bike lanes.				bus shelter and lighting or project trail
					access to Metrorail station.

COMPLETE STREETS ASSESSMENT		
Pedestrian Facilities - Does the proposed design:		
15. Provide adequate clear sidewalk widths along street frontages? (See Complete Street Typology		
guidelines, minimum 5 feet of clear sidewalk width required per ADA)	🗌 Yes	🗌 No
16. Provide recommended buffer widths between pedestrians and traffic? (See Complete Street		
Typology guidelines)	🗌 Yes	🗌 No
17. Include pedestrian facilities and designated crossings that provide direct connections to destinations		
identified in Question #12?	🗌 Yes	🗌 No
18. Provide pedestrian facilities for internal site circulation (e.g., walkways along and between	_	_
buildings, walkways through parking lots to buildings, designated crossings of drive aisles)?	🗌 Yes	🗌 No
19. Provide walkway lighting that meets or exceeds County standards?	Yes	🗌 No
20. Minimize vehicle intrusions into the pedestrian zone (e.g., driveways, lay-by lanes)?	Yes	🗌 No
21. Provide designated pedestrian crossing opportunities every 300-500'?	🗌 Yes	🗌 No
22. Provide ADA compliant curb ramps where required and/or appropriate?	🗌 Yes	🗆 No
Bicycle Facilities - Does the proposed design:		
23. Include bicycle facilities that provide direct connections to destinations identified in Question #12?	Ves	🗆 No
24. Include bicycle facilities identified in adopted plans and/or recommended bicycle facilities based on		
frontage street types? (See Complete Street Typology guidelines)		🗆 No
		_
25. Provide adequate bicycle parking per County Code requirements?	Yes	∐ No
<i>Transit Facilities - Does the proposed design:</i> 26. Include transit enhancements (e.g. bus shelter, bus or intermodal transfer stop, park-and-ride		
facility, bus stop pad or pull-out, direct cash contribution to transit service costs, other transit		
service or system enhancements/amenities that serve the subject property) or propose to defray the		
cost of transit enhancements on-site or within one half mile of the site?	🗌 Yes	🗆 No
a. If yes, are proposed transit enhancements connected to the site by adequate pedestrian facilities?	Yes	No
	_	_
27. Provide lighting at on-site transit stops that meets or exceeds County standards?	Yes	∐ No
28. Provide ADA compliant landing pads at on-site transit stops?	🗌 Yes	🗆 No
29. Provide a space for passengers to wait for, board, and alight transit vehicles that are separate from	_	_
the walkway at on-site stops?	🗌 Yes	No
Parking Facilities - Does the proposed design:		
30. Minimize off-street parking in comparison with Subtitle 27?	🗌 Yes	🗌 No
31. Incorporate shared parking?	🗌 Yes	🗌 No
32. Screen parking from the street (e.g., place it behind the building it serves, "wrap" it with		
commercial or residential space)?	🗌 Yes	🗌 No
33. Utilize structured parking for more than 75 percent of on-site parking?	🗆 Yes	No No
34. Include a parking pricing strategy to control parking demand?	🗌 Yes	🗌 No

Urban Design - Does the proposed design:		
35. Include streets and trails that create a connected, grid system (as opposed to cul-de-sacs)?	🗌 Yes	🗌 No
36. Include doors and street level windows that face the street and/or public parks and plazas?	🗌 Yes	🗌 No
37. Include buildings that come all the way to the street or build-to line?	🗌 Yes	🗌 No
38. Arrange retail, restaurant, and service uses to create an average of less than 150 feet between main		
entrances?	🗌 Yes	🗌 No
39. Minimize auto-oriented uses such as drive-in or drive-up facilities?	🗌 Yes	🗌 No
40. Achieve densities at or within ten percent of the maximum permitted density (if a Euclidean zone)		
or the density recommended by a master plan, sector plan, or general plan designation?	🗌 Yes	🗌 No
41. Convert low-intensity uses such as surface parking or single-story buildings to denser uses?	🗌 Yes	🗌 No
42. Include a mix of uses that will attract people throughout the day and week?	🗌 Yes	🗆 No
43. Include convenience uses (e.g., newsstands, coffee shops, daycare, dry cleaners) for surrounding		
residents, commercial tenants, and transit patrons within walking distance (one-half mile)?	🗌 Yes	🗆 No
44. Incorporate vertical mixed-use?	🗌 Yes	🗆 No

Section 7 Future Conditions This chapter describes the alternatives analysis and identification of preferred concepts to accommodate the future vision for the Central Avenue corridor. Four alternatives were considered for the year of 2035, including a baseline "no-build" scenario from which the other three "build" alternatives were developed. The three build alternatives are as follows:

- 1. Central Avenue "Road Diet" between Southern Ave NE and Cabin Branch Road
- 2. Transit-Oriented Development (TOD) at the Morgan Boulevard Metro Station area
- 3. Pedestrian and bicycle connectivity around Largo Town Center

Each of the three scenarios above is presented as an alternative collection of transportation improvements in response to future changes in land use. The three "Build alternatives" were tested as they represent Complete Streets concept ideas proposed by this study and because they apply to specific conditions in the study area. For example, true transit-oriented, rather than transit-adjacent, development is proposed for the Morgan Boulevard station area, and a reduced general traffic lane with designated bicycle accommodation section, or a "road diet," is proposed for the western end of the corridor.

The analysis presented in this chapter is designed to show how the future changes in land use, anticipated due to the location of four Metrorail stations, can–and should–be supported by transit-oriented street design and connectivity. Increased land use density, transportation mode diversity, and Complete Streets design elements have the potential to impact the appearance and operations of Central Avenue, as well as other arterials in the corridor. This chapter discusses how the regional travel demand model was used to provide an understanding of more detailed corridor intersection operations using Synchro–a signal timing software used to perform capacity analysis for signalized intersections. Results were used to evaluate concepts that are proposed in this study, particularly a significant number of new street connections that have not been modeled but are recognized as elements of project implementation.

Background

Central Avenue (MD 214) was built and developed first as a rural and then as a suburban arterial from Washington, D.C. to Prince George's County. Development during the prior 50 years was oriented in typical fashion toward traditional suburban land use and zoning patterns predicated on easy access to uncongested roadways and low-density retail properties with adequate parking. During the development period of Central Avenue corridor, transit accessibility, pedestrian and bicycle networks, and trip reducing opportunities, such as compact/mixed-use developments, were not prioritized.

The extension of WMATA's Blue Line to Largo Town Center during the last ten years has brought about an opportunity for the Central Avenue corridor to support higher levels of activity and higher concentrations of land use without causing major traffic impacts on the road system. Experience and research¹ has shown that for a typical suburban arterial to efficiently support transit-adjacent neighborhoods, it must become part of a more connected road network that invites pedestrian and bicycle travel. The road itself must be easier to cross and provide more opportunities for safe crossing. Long-standing safety concerns dating back to the initial opening of the Addison Road Metrorail Station are evidence of the inconsistency between the arterial's single mode (auto) design and its multimode (transit, pedestrian, auto) function.

¹ Ewing, Reed and Robert Cervero. Travel and the Built Environment: A Synthesis. Transportation Research Record, 1780: 87-144. 2001.

It has been proposed that Central Avenue, from the Capitol Heights Metro Station to the Addison Road Metro Station, operate as a neighborhood boulevard, a major road that provides designated space for bicycles and pedestrians and promotes compatible travel speeds. Morgan Boulevard, the major road leading to the Morgan Boulevard Station and FedEx Field, has also been proposed as a neighborhood boulevard with fewer general traffic lanes.

Applying the 4-Step Model

The future alternatives were developed by incorporating and applying the traditional 4-step transportation modeling process, which is shown and described in Figure 30.

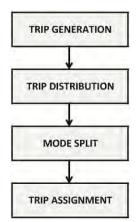


FIGURE 30. 4-STEP MODEL

For each of the Transportation Analysis Zones (TAZ) in the computer-based transportation demand model, the household and employment data generates a certain number of trips. In the second step, these trips are distributed throughout the network based on the strength of the attraction between trip generators (e.g., residences) and trip attractors (e.g., places of employment) in the model. The mode split step determines the number of trips for each available mode in the model–transit, single occupant vehicle, and high occupant vehicle (HOV 2 and HOV 3+). The county model (like many others) does not produce mode share for pedestrian or bicycling trips. The final step, trip assignment, places the trip flows onto the transit and road network.

Future transportation network improvements, which include changes in vehicle and transit infrastructure as well as alterations to transit services schedules, were incorporated into the travel-demand model by County staff. The following transportation improvements in the study area, which are included in the county's long- range fiscally-constrained transportation plan, are part of the future year model:

- Addition of an eastbound right-turn lane at the intersection of Central Avenue and Addison Road.
- Modification of southbound Hill Road to a five-lane approach that includes two left-turn lanes, a shared left-through lane, a through lane, and a right-turn-only lane.
- Modification of northbound Shady Glen to include two left-turn lanes, a through lane, and a shared throughright lane.
- Modification of westbound Central Avenue to include two left-turn lanes, two through lanes, and a shared through-right lane.

• Modification of northbound Ritchie Road to a five-lane approach that includes two left-turn lanes, a shared left-through lane, a through lane, and a right-turn-only lane.

Prince George's County modeling staff ran the travel demand model and provided the outputs and results for use in the development of the future alternatives for the TOD Mobility project. The county model is calibrated and validated based on the recent land use, household, employment, and transportation network data. The data sources used to develop the travel demand model are described in Appendix 3. The methodology used to translate travel demand model output data into baseline roadway traffic volumes used established engineering principles and techniques. Future alternatives were developed by combining the travel demand model results with market study data and proposed land use scenarios developed by AECOM. The future scenario development methodology is described in Appendix 3.

TRIP GENERATION

The project study area in the Prince George's County's travel-demand model is comprised of 46 Transportation Analysis Zones (TAZ), and each of these zones contains the household and employment data used to produce and attract trips. The household and employment data in the model is shown in Table 6, and comes from MWCOG regional data and Prince George's County community master plans. The growth rates in households and employment shown is the average across the entire area and may differ from TAZ to TAZ based upon characteristics of individual TAZs.

TABLE 6. HOUSEHOLD AND EMPLOYMENT DATA

Model Input	Year 2011	Year 2035	Annual Growth
Households	15,400	34,400	3.08%
Jobs	15,300	32,800	2.84%

Trip generation for the future conditions models consisted of the following:

No-Build Scenario

The No-Build scenario, which functions as the baseline for future conditions, used the model results after standardized application of the National Cooperative Highway Research Program (NCHRP) 255 traffic volume development processes, and included minimal volume balancing between intersections.

Build Scenario #1: Road Diet

The results of the market survey data presented a very different picture of residential and employment growth in the study corridor as compared to the assumptions that produced the travel demand results for the No-Build alternative. Table 7 contrasts the market-based analysis with the outputs from the county's travel demand model.

Forecasting Tool	Forecasted Household unit growth to 2035	Total Growth Expected
Travel Demand Model	19,000	123%
Market Study	2,000-2,500	13–16%
Road Diet Analysis	12,500	81%

In the road diet alternative, one-third of growth assumed in the travel model was projected not to occur. This is a highly conservative estimate relative to the results of the market study. The reduced growth assumptions have the following effects on traffic volumes at the intersections of Central Avenue/Southern Boulevard (near the Capitol Heights Metro station) and Central Avenue/Addison Road (near the Addison Road Metro station), and are shown in Table 8.

Metro Station	Model Household Growth (2011-	Road Diet Household		del trips rated	Final Road (reducti mo	on from
Analysis Area	2035)	Growth (estimated)	A.M. Peak Hour	P.M. Peak Hour	A.M. Peak Hour	P.M. Peak Hour
Capitol Heights	1,481	987	730	610	487 (-243)	407 (-203)
Addison Road	1,716	1,144	539	494	360 (-179)	329 (-165)

_	_		-
TARIE 8	BUILD SCENARIO	$\pm \pm 1 \cdot R \cap \Delta D$ Dift Trie	Generation Modifications
TADLE 0.	DOILD JCLINARIO		GENERATION MODIFICATIONS

Build Scenario #2: Morgan Boulevard TOD

The trip generation methodology for this alternative was based on the county's preferred alternative for the Morgan Boulevard Station area, referred to as Mixed-Use Concept A. The trip generation methodology proceeded as follows:

- 1. Trip generation was determined for the existing 2011 land uses using the eighth edition of the Institute of Traffic Engineers Trip Generation Manual.
- 2. 2011-2035 natural growth in the TAZ (not including the TOD concept) was determined by comparing existing traffic volumes to the no-build traffic volumes.
- 3. Trip generation for the preferred alternative was determined using the eighth edition of the Institute of Traffic Engineers Trip Generation Manual.
- 4. Total year 2035 trips were calculated by combining the existing trips, the natural 2011-2035 growth, and the trips generated by the preferred alternative development.

Time Period	Existing Trip Generation (2011)	Travel Demand Model Growth (2011-2035)	TOD Trip Generation	Total Trips (2035)
A.M. Peak Hour	1,472	525	1,257	3,254
P.M. Peak Hour	1,546	961	2,133	4,640

TABLE 9. BUILD SCENARIO #2: MORGAN BOULEVARD TOD TRIP GENERATION

Build Scenario #3: Largo Town Center

The lack of additional analysis showing specific land use changes within the Largo Town Center required the team to assume no differences in the projections of the county's travel demand model. For this alternative, the land use was

assumed to remain the same as the no-build model. This method allows for all the forecasted natural growth to occur, but would also include full-build of the currently vacant land in Largo Town Center based on existing zoning.

TRIP DISTRIBUTION

The county's travel demand model produced the trip distribution matrix, which shows the total number of trips produced and attracted to each TAZ in the model. The trip distribution matrix for the no-build alternative was assumed to remain constant for the three build alternatives.

MODE SPLIT

Mode split is typically an output of the travel demand model. The mode split results are generated based on several independent variables in the travel demand model. Among the most common factors are: residential density, household income, number of vehicles in a household, distance from the Central Business District (CBD), and availability of transit.

No-Build Scenario

As the future baseline condition by definition, the volumes produced by the no-build model incorporate the output mode split from the travel demand model.

Build Scenario #1: Central Avenue Road Diet

Improvements to the pedestrian, bicycle, and trail infrastructure as part of the road diet alternative, in conjunction with future development that would be more favorable to non-automobile trips, provides an opportunity to reduce future vehicular trips. Data from the 2010 American Community Survey² shows that for Prince George's County, two percent of workers 16 years and older either walked or bicycled to work. Based on this data, and assuming a conservative approach that there would be no increase in non-motorized mode share in the future, two percent of traffic was removed from the intersections of Central Avenue/Southern Boulevard and Central Avenue/Addison Road.

Build Scenario #2: Morgan Boulevard TOD

Total year 2035 trips generated by the TOD development at the Morgan Boulevard Metro station were factored using mode-split trip data by trip purpose from the travel-demand model. These data were used to account for walking, bicycling, transit, and carpooling trips. The traffic generated from the TOD were reduced based on pedestrian, bicycle, HOV 2+, HOV 3+, and transit mode share to determine the final number of vehicle trips in the A.M. and P.M. peak hours, as shown in Table 10.

Time Period	TOD Trip Generation	Work trips	Non- work trips	Transit Work Trips (15%)	Transit Non- Work Trips (5%)	Carpool Work Trips (5%)	Carpool Non- Work Trips (10%)	Ped/Bike Trips – all purposes (2%)	Final Auto Trips
A.M. Peak Hour	1,257	542	715	-81	-36	-27	-72	-25	1,016
P.M. Peak Hour	2,133	500	1,633	-75	-82	-25	-163	-43	1,745

TABLE 10. BUILD SCENARIO #2: MORGAN BOULEVARD TOD MODE SPLIT REDUCTIONS

2 http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_1YR_B08301&prodType=table).

Build Scenario #3: Largo Town Center

No mode share reductions were taken for Largo Town Center. Given the uncertainty of what future transportation improvements and land use changes would be, it was assumed that a conservative approach would be most appropriate in evaluating the suggested roadway changes.³

TRIP ASSIGNMENT

The fourth and final step of the modeling process takes the trips and assigns them to the roadway network.

No-Build Scenario

The trip assignment produced by the travel demand model was used for this scenario without modification.

Build Scenario #1: Road Diet

An examination of the proposed future roadway network near Southern Boulevard area south of Central Avenue suggests that travel patterns are likely to change. Proposed roadway connections that lie south of and parallel to Central Avenue, specifically the alignment that connects various sections of Cumberland Street and Brooke Road, would provide northbound traffic with alternate routes to travel towards Washington, D.C. The new route choices help disperse traffic and reduce "point-loading" at Central Avenue/Southern Avenue SE.

The proposed traffic signal at Central Avenue/Davey Street creates an opportunity for vehicle traffic originating from areas east of Chamber Ave/Larchmont Ave and destined towards Washington, D.C. to avoid the congestion on Southern Ave by using Davey Avenue to make a left-turn onto Central Avenue. Therefore, for northbound through volumes on Southern Avenue, it is assumed that a small percentage would divert to take advantage of the less-congested traffic conditions on Davey Avenue. These vehicles were routed onto Davey Street, and then proceed through the Central Avenue/Southern Avenue intersection as westbound through traffic.

The proposed new east-west street connections that would run from Addison Road west to Rollins Avenue and Suffolk Ave., would allow some of the traffic to reach Central Avenue without traveling north on Addison Road. Proposed traffic signals at Central Avenue/Davey Road and at Central Avenue/Cabin Branch Road would make it easier for vehicles to access Central Avenue from these locations and reduce congestion at the Central Avenue/Addison Road intersection. The improvement in network connectivity via additional route choices and new traffic signals would enable vehicles to seek the less congested routes.

Build Scenario #2: Morgan Boulevard TOD

This scenario focused on development at a specific and single location. Therefore, there were no adjustments needed during the trip assignment step.

Build Scenario #3: Largo Town Center

Without any changes to the land use pattern other than what was provided by the travel demand model, this scenario did not require any modifications during the trip assignment step.

³ A study of Largo Town Center market and land use is currently underway, so was unavailable for this analysis.

No-Build Scenario

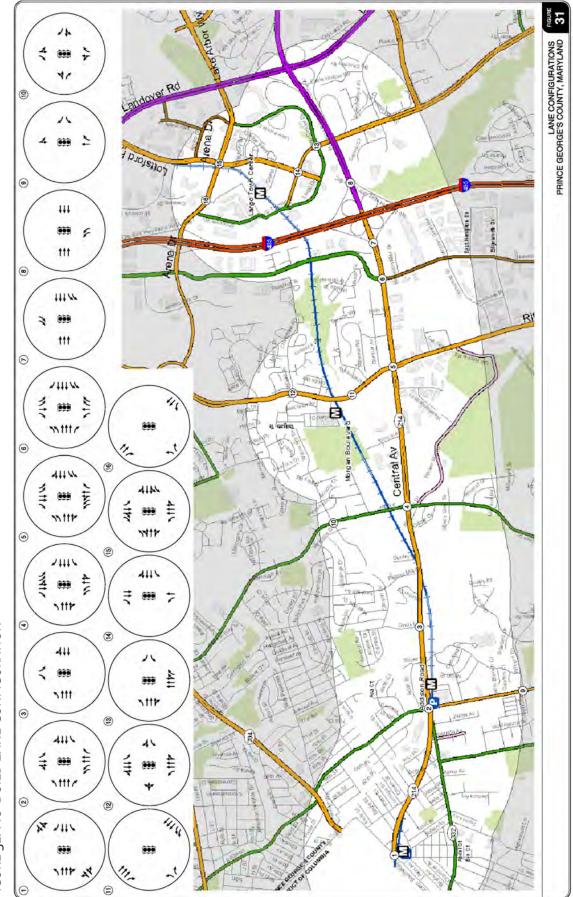
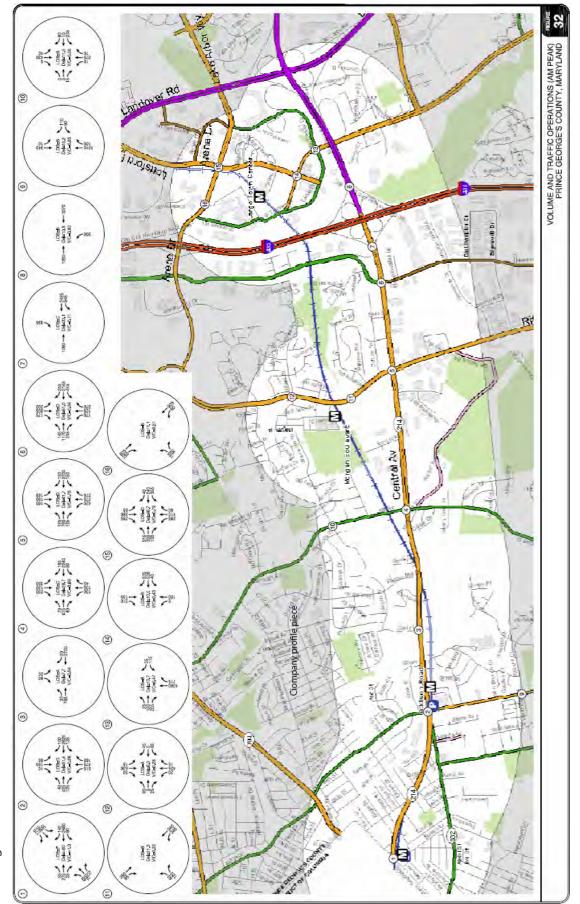

The final volumes developed through the 4-step modeling process, the NCHRP 255 procedures, and final post-processing and volume balancing were entered into the Synchro 8 traffic modeling software. The Synchro model contained the transportation network improvements assumed to occur by the year 2035. The no-build lane configurations for the study area are shown in Figure 31. The Synchro model was then used to evaluate traffic operations during the A.M. and P.M. peak hours, which are summarized in Table 11 and Table 12.

TABLE 11. COMPARISON BETWEEN 2011 EXISTING CONDITIONS AND 2035 NO-BUILD RESULTS–A.M. PEAK

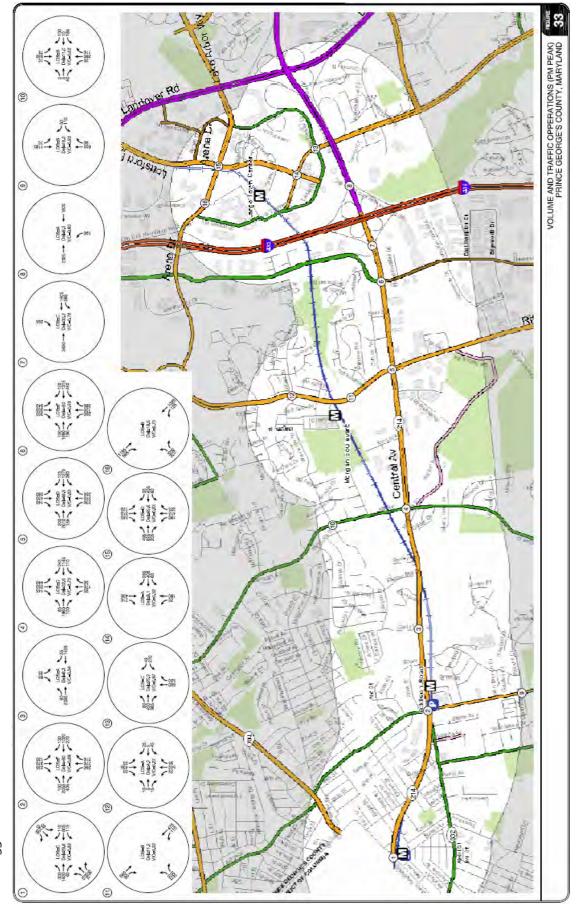
A.M. Peak		2011 Existing			2035 No-Buil	d
Central Avenue at:	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C
Southern Ave SE	С	27.3	0.74	F	> 80	> 1.00
Addison Rd	C	26.5	0.66	D	51.4	o.86
Cindy Ln	A	7.4	0.49	А	7.7	0.64
Hill Rd/Shady Glen Dr	С	28.7	0.63	С	28.7	0.69
Morgan Boulevard/Ritchie Rd	С	32.9	0.59	D	41.7	0.78
Hampton Park Blvd/Brightseat Rd	D	41.1	0.60	D	51.0	0.84
I-95 SB Ramp	D	41.4	0.69	С	33.1	0.71
I-95 NB Ramp	A	9.9	0.64	В	10.9	0.80

TABLE 12. COMPARISON BETWEEN 2011 EXISTING CONDITIONS AND 2035 NO-BUILD RESULTS–P.M. PEAK

P.M. Peak		2011 Existing			2035 No-Buil	d
Central Avenue at:	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C
Southern Ave SE	С	22.2	0.61	С	29.6	0.82
Addison Rd	D	38.5	0.81	F	> 80	0.89
Cindy Ln	A	4.9	0.46	А	6.3	0.54
Hill Rd/Shady Glen Dr	С	25.1	0.65	С	32.6	0.73
Morgan Boulevard/Ritchie Rd	D	48.8	0.79	D	48.9	0.83
Hampton Park Blvd/Brightseat Rd	D	39.7	0.80	F	> 80	0.93
I-95 SB Ramp	С	24.1	0.76	С	32.2	0.78
I-95 NB Ramp	Α	6.8	0.64	А	9.3	0.60



The results for the A.M. peak hour show that, for all the intersections above, with one exception, the increased traffic volumes in the 2035 no-build scenario produce operations that degrade from those in existing conditions. The exception is for results at the I-95 southbound ramp terminal. For this intersection, the increased volume contributes to an increase in the volume-to-capacity ratio, but the LOS and delay at the intersection improves. The improvement stems from signal timing optimization at the ramp terminal. For all the intersections shown in Table 11, with the exception of Central Avenue/Southern Ave SE, which operates at LOS F, the intersections meet or exceed the Prince George's County's operational standard of LOS E for signalized intersections in urban areas.


Overall, the results for the P.M. peak hour are similar to the A.M. peak hour. The increased volume in the year 2035 nobuild scenario leads to degraded intersection operations at all of the above intersections. All intersections perform at or better than the urban signalized intersection standard of LOS E except for Addison Road and Brightseat Road. All of the operational results for the above intersections may be seen in Figure 32 and Figure 33, and the complete traffic output for the no-build scenario, including 95th percentile queuing results, is contained in Appendix 4.

NO-BUILD CONCLUSIONS

Household and employment growth in the study area that is reflected in the travel demand model relies on the assumption that consistent and rapid growth is going to occur along the Central Avenue corridor. Based on the results of the market study, these growth rates seem to be quite accelerated, even though they reflect the maximum build-out of all the adopted community master plans. If less growth occurs, future intersection operations, which already meet the county's intersection standards, would perform even better than what is shown above. This would also be the case in the scenario where all the forecasted household and employment growth occurs, but growth in single-occupant-vehicle trips does not increase as fast as trips are generated. In either event, based on the results for the intersections on Central Avenue, the conclusion is that the existing roadway capacity is sufficient to accommodate all of the projected growth in the year 2035.

Build Scenario #1: Central Avenue Road Diet Results

"Road Diet" is a term used to describe reducing the number of motor vehicle travel lanes on a road in order to accommodate facilities for public transit and active transportation modes. The benefits of the road diet are varied and can include improving the character of the road, reducing traffic speeds, improving safety, increasing pedestrian and bicycling trips, creating space for landscaping and streetscape improvements, reducing vehicle miles traveled, increasing on-street parking, and encouraging a vibrant residential and business environment. Potential negative impacts of a road diet can include increased traffic congestion during peak hours and increased travel on parallel or alternate routes.

This alternative tests the ability of Central Avenue, between Southern Avenue and Cabin Branch Road, to accommodate future traffic with a reduction from a seven-lane to a five-lane cross section. The road diet would effectively remove one lane of traffic in each direction on Central Avenue for a distance of approximately 1.1 miles. The road diet alternative modeling included the following changes to the transportation network, as shown in Figure 34:

- At Southern Ave, the eastbound through lane was removed, the westbound right-turn storage was increased, and the signal cycle length and phase splits were optimized.
- At Davey Road, the eastbound and westbound through lanes were removed, and a traffic signal was installed.
- At Addison Road, the eastbound and westbound through lanes were removed, and the signal cycle length and phase splits were optimized.
- At the entrance to the Addison Metro Station on Central Avenue, the eastbound and westbound through lanes were removed, and the intersection was signalized.
- At Cabin Branch Road, the eastbound and westbound through lanes were removed, and a traffic signal was installed.

For this section of Central Avenue, the two travel lanes can be repurposed for several alternate uses, including a transitway, bus pullouts, bus queue jumps, buffered bicycle lanes, larger sidewalks, on-street parking, or a combination of these and other transportation improvements.

FIGURE 34. ROAD DIET LANE CONFIGURATIONS

The analysis assumed that:

- The Central Avenue/Addison Road signal cycle remains 150 seconds long in the A.M. peak hour.
- To accommodate the higher volumes in the P.M. peak hour, the cycle length was increased to 180 seconds.
- Yellow and red clearance times were reduced to allow for greater vehicle throughput and to balance out the effect of eliminating one lane in each direction.
- Shortening of the roadway cross-section on Central Avenue allows pedestrian clearance times to be reduced.
- Signals between Southern Avenue and Cabin Branch Road were coordinated.

The signal phasing at the intersection was changed from northbound/southbound split phasing to left-turn protected. This intersection now operates with eight phases. There is an imbalance between the two northbound left turns and the single southbound left-turn lane. It appears possible to operate the left-turn phases concurrently if the median on the east leg of the intersection would be partially removed to allow the southbound left-turning vehicle paths to not overlap with the northbound left-turning vehicles. The reduced cross-section would make the median unnecessary to accommodate pedestrian movements across Central Avenue.

Three additional intersections are part of the Central Avenue road diet analysis area. They would be located at:

- Davey Road
- Addison Metro Station Entrance
- Cabin Branch Road

All three intersections are not currently signalized, and were analyzed as signalized intersections as part of this alternative. There are several benefits to adding traffic signals at these locations as part of the road diet scenario.

- As the area urbanizes and density increases, additional signals at intersections would help to slow traffic and provide additional locations for pedestrians to cross Central Avenue.
- New signals can make it easier to access retail development along Central Avenue.
- Signalizing the intersection at Davey Road would make it easier to access the Capitol Heights Metro station, and provides a nearby alternative to the congested Central Avenue/Southern Avenue intersection.
- Coordinating signal progression would maintain vehicle throughput in the corridor.
- A full signal at the intersection of Central Avenue/Addison Metro Station entrance would enhance pedestrian and vehicular access to and from the Metro station.

Results for all intersections analyzed for this alternative may be seen below in Table 13 and Table 14. Figure 35 and Figure 36 contain the HCM results and traffic volumes for the alternative. Complete HCM report outputs from Synchro, including 95th percentile queuing results, can be found in Appendix 5.

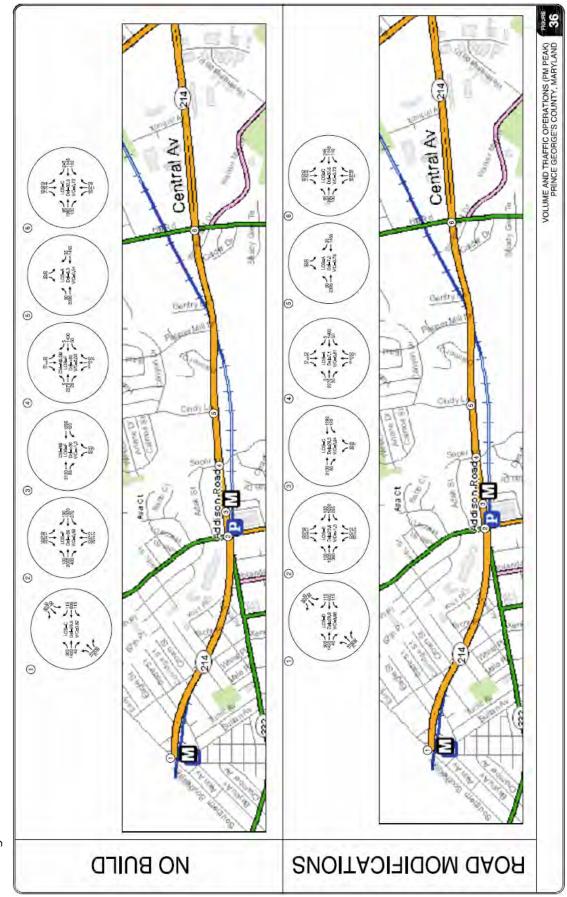
TABLE 13. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 ROAD DIET RESULTS–A.M. PEAK

P.M. Peak	P.M. Peak 2035 N				2035 Road D	iet
Central Avenue at:	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C
Southern Avenue SE	F	> 80	>1.00	E	75.2	> 1.00
Davey Road ¹				Α	10.3	0.83
Addison Road	D	51.4	0.86	E	66.9	0.97
Addison Road Metro Station Entrance ¹				D	51.7	1.00
Cabin Branch Road ¹				С	30.8	0.96

¹Unsignalized in the No-Build scenario


TABLE 14. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 ROAD DIET RESULTS–P.M. PEAK

P.M. Peak		2035 No-Build			2035 Road D	iet
Central Avenue at:	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C
Southern Avenue SE	С	22.2	0.61	D	39.8	0.98
Davey Road1				В	13.3	0.70
Addison Road	D	38.5	0.81	E	73.6	> 1.00
Addison Road Metro Station Entrance1				С	29.3	0.94
Cabin Branch Road1				В	11.6	0.82


¹Unsignalized in the No-Build scenario

ROAD DIET CONCLUSIONS

Based on the operational results, which were derived from the county's travel demand model, post- processing, pedestrian/bicycle mode share, and data from the market study, as well as the addition of three new traffic signals and alterations to existing timing settings, it appears that a road diet along Central Avenue would meet the Prince George's County operational standards for the A.M. and P.M. peak hours. While assumptions about growth and signal operations can vary, the analysis shows that a road diet along Central Avenue would meet standards while providing many other community, land use and livability benefits.

Build Scenario #2: Morgan Blvd TOD

The second Build alternative examined the future traffic operations of, and potential roadway modifications needed, near the Morgan Boulevard Metro Station to support a planned transit-oriented development. This section discusses this alternative, provides the results of the operational analysis, and assesses potential opportunities for roadway modifications that more effectively support transit-oriented development than current conditions.

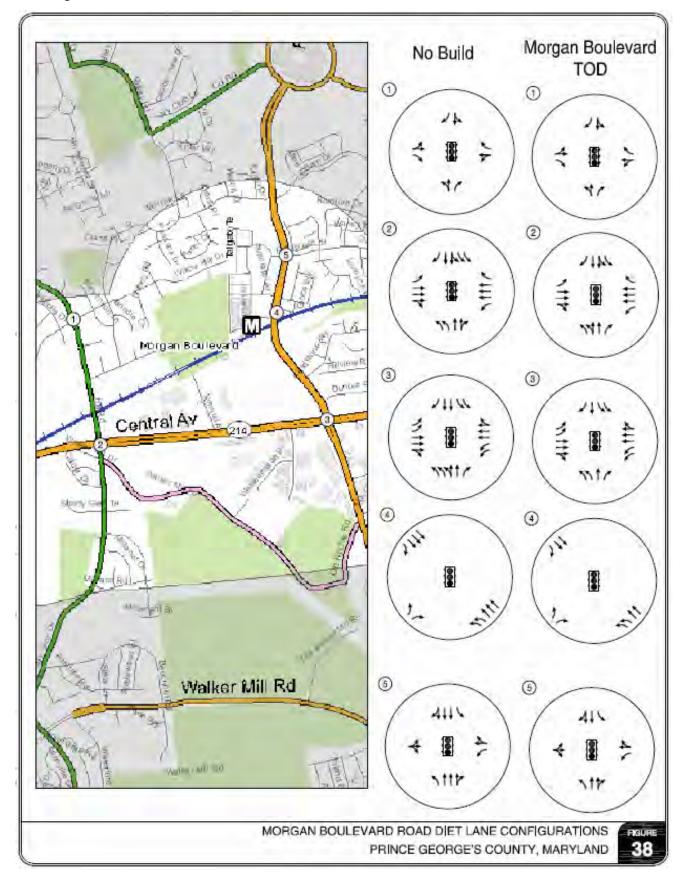
Morgan Boulevard is currently an eight-lane arterial roadway providing access to the Morgan Boulevard Metro Station, several housing developments, and FedEx field. The study area for this analysis roughly includes the area north of Central Avenue, south of FedEx Field, east of Hill Road, and west of Brightseat Road. Today, the area's primary land uses are residential housing units (single-family detached, townhouse, and apartment), a small amount of retail, and a middle school. Morgan Boulevard Metro Station is a key transportation feature and includes a large park-and-ride lot.

The county's preferred alternative for the future analysis is the "Mixed Use Concept A." A rendering of the concept may be seen in Figure 8. The land uses as part of the preferred alternative provided the inputs into the 4-step modeling process was previously described. After the volumes were produced through the modeling process, a single post-processing modification was applied. The reason for the post-processing step was to normalize the results of the hand-adjusted trip generation and mode split steps with the travel demand model results to fully account for the effects of the TOD alternative, and adjust the year 2035 model volumes for use in Synchro. Appendix 6 contains the spreadsheet calculations for all the analysis steps.

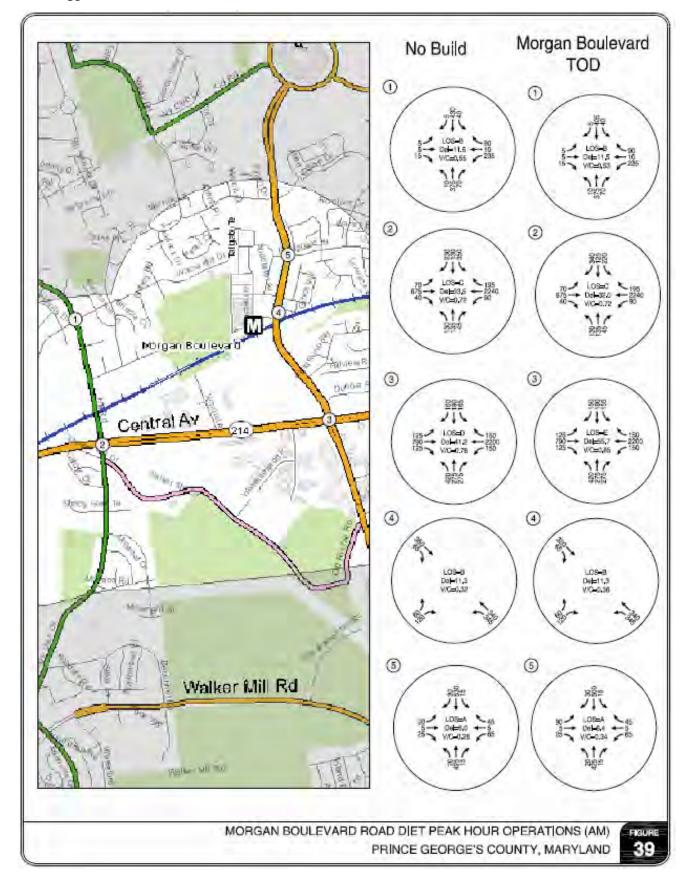
Table 10 shows a comparison of the adjusted southbound volumes at Central Avenue/Hill Road and at Central Avenue/ Morgan Boulevard based on the Morgan Boulevard TOD scenario and the no-build volumes from the model. The percent reduction from the no-build to the TOD model is shown in red and in parentheses.

	2035 N	o-Build	2035 Morgan Boulevard TOD		
Intersection	A.M. Peak Hour	P.M. Peak Hour	A.M. Peak Hour	P.M. Peak Hour	
Central Avenue/Morgan Boulevard	515	850	482 (-6.4%)	823 (-3.2%)	
Central Avenue/Hill Road	710	835	687 (-3.2%)	798 (-4.4%)	

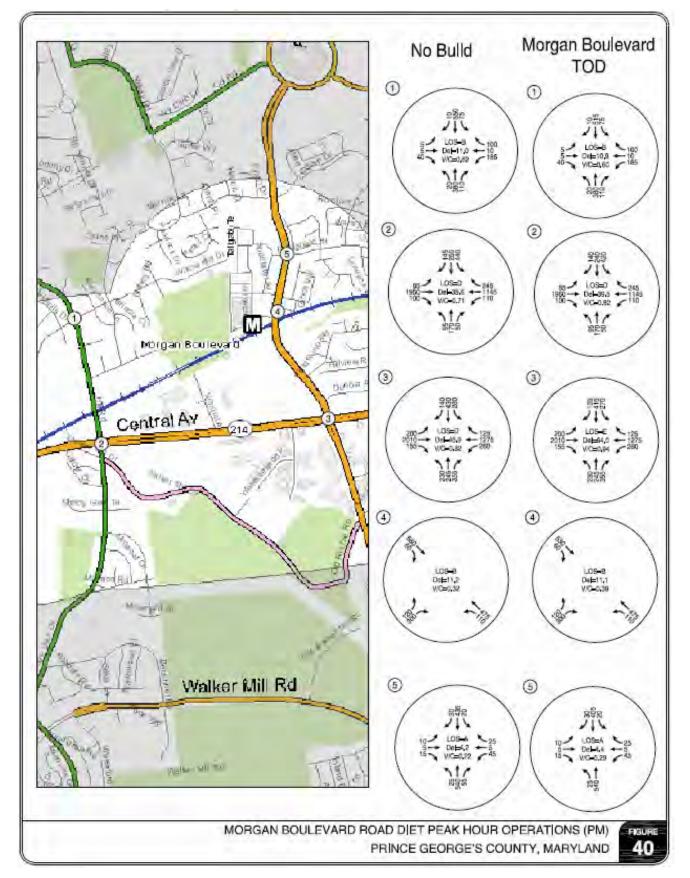
TABLE 15. COMPARISON OF NO-BUILD AND MORGAN BOULEVARD TOD SOUTHBOUND APPROACH VOLUMES, 2035


FIGURE 37. AECOM MORGAN BOULEVARD DEVELOPMENT SCENARIO: MIXED USE CONCEPT 'A' ALTERNATIVE

Synchro was used to build traffic models to analyze the No-Build and Morgan Boulevard TOD scenarios at the intersection level. The intersections analyzed in the model are listed below:


- Hill Road/Willow Hill Road
- Central Avenue/Hill Road
- Central Avenue/Morgan Boulevard
- Metro Entrance/Morgan Boulevard
- Ridgefield Boulevard/Morgan Boulevard

The Morgan Boulevard TOD Synchro model reduced southbound volumes on Morgan Boulevard and Hill Road based on the adjustments shown in Table 10. The adjusted volumes for Central Avenue/Hill Road and Central Avenue/Morgan Boulevard were balanced with the other study intersections along Hill Road and Morgan Boulevard in Synchro. The Morgan Boulevard TOD Synchro model removed a through lane in each direction on Morgan Boulevard and optimized the signal timing. The removal of the through lane could provide additional roadway space for bicycle lanes, a transitway, or transit-specific priority infrastructure such as queue jumps or bus pullouts. The new lane configurations for the study area may be seen in Figure 9.


The HCM calculations were used in Synchro to analyze the volume-to-capacity (v/c) ratio and level of service for each of the intersections. Figure 10 and Figure 11 show a comparison of the lane configurations and A.M. and P.M. operations for the no-build and Morgan Boulevard TOD scenarios. Complete HCM report outputs from Synchro, including 95th percentile queuing results, can be found in Appendix 6.

MORGAN BOULEVARD CONCLUSIONS

The following are the results and conclusions for the Morgan Boulevard TOD analysis:

- The county's model predicts trip generation based on the maximum possible build-out for the area.
- Market-based economic projections for development suggest that the study area will grow slower than the travel demand model suggests.
- Traffic volumes projected based on trip-generation methods for the Morgan Boulevard TOD alternative indicate that traffic volumes are expected to be modestly lower than the model projections for maximum build-out.
- Morgan Boulevard has substantial extra capacity and would operate acceptably with the removal of a lane in each direction and still accommodate traffic volumes in 2035.
- All study intersections would operate at a LOS E or better and have a v/c ratio below 1.0.
- All study intersections meet the urban signalized intersection standards for Prince George's County.
- The lane-reduction treatment on Morgan Boulevard would not produce failing results at any of the study intersection.

Based on the findings, it is recommended that the county consider removing a lane in each direction on Morgan Boulevard. Removing a lane in each direction provides the opportunity to allocate roadway space to accommodate other modes (walking, biking, transit, etc.) while still allowing the roadway to operate acceptably for vehicles. This roadway space could be reallocated to support alternative modes of transit and create a more walkable, bikeable, and/or transit-friendly street.

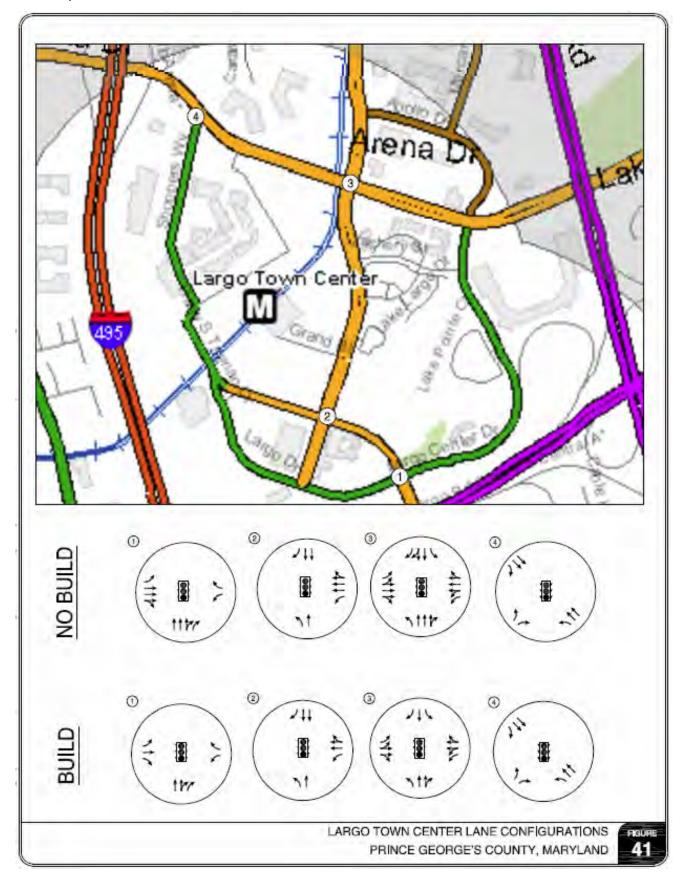
Build Scenario #3: Largo Town Center Results

The third build alternative examined was a high-level concept analysis at the Largo Town Center, which lies east of I-495, north of Central Avenue (MD 214), west of Landover Road (MD 202) and south of Arena Drive. This area contains a mix of land uses, including a large retail shopping center, a number of business parks, and residential developments, one of which is clustered around a small lake.

Largo Town Center is well-served by a number of transportation facilities. It is adjacent to I-495, which provides access to a series of large arterials within the study area via the interchanges at Arena Drive and Central Avenue (MD 214). Largo Town Center can also be reached via a number of connections to Landover Road to the east, by Lottsford Road to the north, and from Harry S Truman Drive to the south. WMATA's Blue Line terminates at Largo Town Center Metro Station, which contains a park-n-ride facility with over 2,300 parking spaces. Many of the residential developments, while walking distance to the Metro station, require out-of-direction travel to reach it. The sidewalk system is well-developed, but distances between the different land uses make the area less walkable than it could be. There are few bicycle and trail facilities that would make non-motorized travel safer and more attractive as an alternate mode of transportation.

Several large, undeveloped parcels in Largo Town Center provide opportunities for transit-oriented development. WMATA owns two parcels adjacent to the Metro station that total almost 25 acres. Three other parcels, totaling almost 30 acres, are also adjacent to and lie to the east and north of the station. Two other developable parcels are located in the study area, and they total approximately 28 acres combined.

The Largo Town Center alternative would seek to implement elements of the Complete Streets policies, discussed earlier in this report, with a goal to improve overall network connectivity. Connecting residential parcels together and providing new ways to access the arterial network would encourage residents to walk or bicycle to the Largo Town Center Metro station, shopping, and to work. Removing travel a lane in each direction on the arterial network allows the roadway space to be repurposed for bike lanes, wider sidewalks, on-street parking, or transit infrastructure improvements such as dedicated bus lanes, queue jumps, or bus- transit signal priority.


The following four intersections were analyzed as part of the alternative, with the modifications at each location noted. A diagram showing the reconfigured proposed intersections, contrasted with the No-Build, may be seen in Figure 41.

- Arena Drive/Shoppers Way:
 - y No changes made to the network at this location.
- Arena Drive/Lottsford Road:
 - y Alter the southbound approach to include a left-turn, through lane, and right-turn lane.
 - y Alter the eastbound approach to include a left-turn lane, a shared left-through lane, and a shared through-right lane.
 - y Alter the northbound approach to include a left-turn lane, a through lane, and a shared throughright lane.
 - y Alter the westbound approach to include a left-turn lane, a shared left-through lane, and a shared through-right lane.
- Harry S Truman Drive/Lottsford Road:
 - o Alter the westbound approach to include a left-turn lane, a through lane, and a shared through-right lane.
- Harry S Truman Drive/Largo Town Center Drive
 - o Alter the eastbound approach to include a left-turn lane, a through lane, and a right-turn lane.
 - o Alter the northbound approach to include a through lane, a shared through-right lane, and a right-turn lane.

Preliminary examination of the roadway network showed that it might be possible for these locations (and for the connecting roads) to meet or exceed the county's standard of LOS E for signalized intersection operations. Further confirmation was necessary and Synchro was used to complete the analysis.

LARGO TOWN CENTER CONCLUSIONS

The Synchro model was produced by utilizing the existing traffic volumes created from the No-Build results from the travel-demand model and subsequent post-processing and network balancing. Changes to the transportation network were made. Signal cycles were adjusted as needed, and optimized to maintain progression and coordination with neighboring

intersections. Pedestrian clearance times were reduced due to the reduced cross-sections at the reconfigured intersections. Lane assignments were altered as needed to benefit vehicular movements based on future forecasted turning movements.

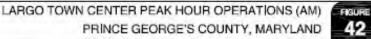
Table 16 and Table 17 provide the results of the Synchro analysis for the four intersections analyzed in the study area. The results of the Synchro analysis shows that with the lane reductions and intersection modifications, all four study intersections degrade from the No-Build scenario to the Largo Town Center scenario. This is to be expected, however, because vehicle capacity was removed in all cases, with the exception of the intersection of Shoppers Way/Arena Drive. Despite the reduction in capacity, all four intersections continue to perform at, or in excess of, the county's standard of LOS E or better for signalized intersections. This is the case even though the No-Build volumes were not reduced as in the case with the other two Build scenarios. Full results may be seen in Figure 42 and Figure 43. Complete HCM report outputs from Synchro, including 95th percentile queuing results, can be found in Appendix 7.

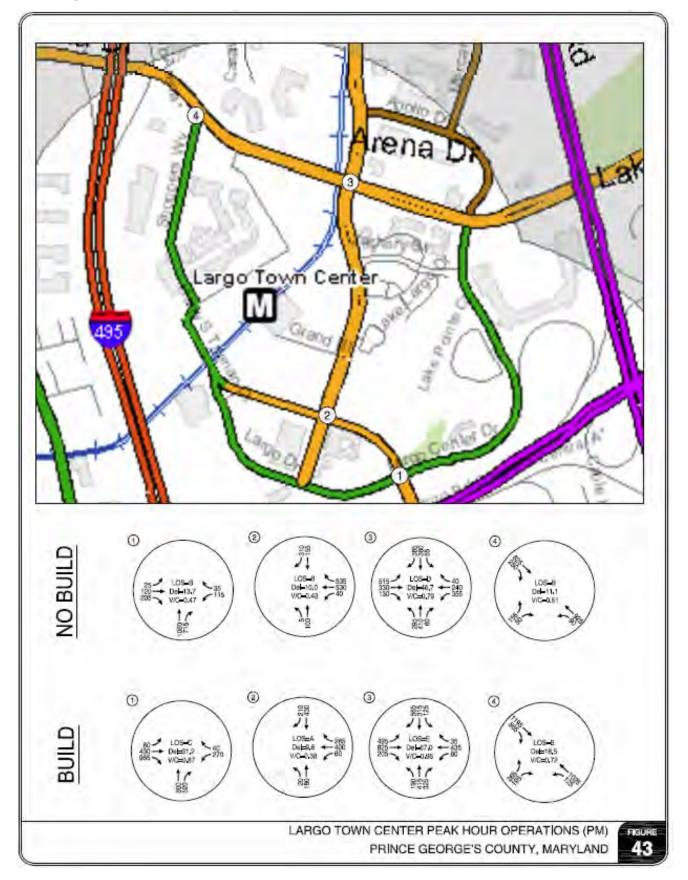
TABLE 16. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 LARGO TOWN CENTER RESULTS–A.M. PEAK

A.M. Peak		2035 No-Buil	d	2035 Largo Town Center			
		Delay (s)	V/C	LOS	Delay (s)	v/c	
Harry S Truman Dr/Largo Town Center Dr	В	13.7	0.47	В	16.4	0.61	
Lottsford Rd/Harry S Truman Dr	В	10.0	0.43	В	10.8	0.49	
Lottsford Rd/Arena Dr	D	46.7	0.79	Е	78.2	0.92	
Shoppers Way/Arena Dr	В	11.1	0.51	В	11.1	0.51	

TABLE 17. COMPARISON BETWEEN 2035 NO-BUILD AND 2035 LARGO TOWN CENTER–P.M. PEAK

P.M. Peak	2035 No-Build			2035 No-Build 2035 Largo			35 Largo Towr	n Center
	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C		
Harry S Truman Dr/Largo Town Center Dr	С	25.2	0.67	С	31.2	0.87		
Lottsford Rd/Harry S Truman Dr	А	9.1	0.32	А	9.8	0.38		
Lottsford Rd/Arena Dr	D	45.6	0.83	Е	67.0	0.96		
Shoppers Way/Arena Dr	В	18.5	0.72	В	18.5	0.72		


Were the vacant properties to be developed as mixed-use, transit-oriented, or less intensely than the future travel-demand model predicts, the impact of the lane reduction on the nearby roadways would have less impact. In either case, the analysis shows that there currently is, and will continue to be, an abundance of capacity in Largo Town Center, given the currently planned growth.


NO BUIL

BUIL

a rena Largo Town Center Gran 2 3 0 ٢ 11 縣 LOS-8 538 Del-10.0 + 530 VICE0.43 + 40 LOS=0 ↓40 Del+46.7 ↔240 V(C=0.79 / 355 LOS-8 Del-13.7 WC-0.47 1.08 330 130 120 le-11. 0.5 1 11/ 1/8 2 3 1 3 調 鍋s 八八 LOS-E 40 Del-78.2 - 240 VIC-0.82 - 355 L05-8 535 D+E10.8 + 530 V/C=0.49 + 40 LOS-8 DeE164 LOS-E 918 330 130 122 De=11,1 C 0.51 NT/ 1 1/影

The following non-motorized transportation improvements are recommended for Largo Town Center in conjunction with the roadway changes above. These improvements would be helpful in implementing Complete Street policies, improving network connectivity, and increasing transit, bicycling, and walking in the study area. Not all improvements are necessary and they may be implemented in phases as development occurs and money becomes available.

Pedestrian improvements:

- Add a traffic signal and/or crosswalk at the intersection of Largo Town Center Drive and the entrance to the residential development across from the ramp to MD 214.
- Extend the sidewalk from the Largo Town Center Metro Station to the intersection of Lottsford Road and Zachery St.
- Add crosswalks from the residential developments east of Lottsford Road to the vacant parcels on the west side of Lottsford Road.
- Provide more access points from the residential developments east of Lottsford Road onto Lottsford Road.
- Add a crosswalk on the north side of Lottsford Road at Grand Boulevard.
- Add a crosswalk at the intersection of Arena Drive and Shoppers Way.
- Create a more direct connection from Lottsford Road to the back side of the Capital Center shopping center.

Bicycle improvements:

- Create a bike boulevard from the intersection of Arena Drive/Lottsford Road to Harry S Truman Drive/ Lottsford Road and then south across Central Avenue.
- Improve bicycle parking at the Largo Town Center, the Capital Center shopping mall, and at the shopping center in the southeast quadrant of Arena Drive/Largo Town Center.

The plan proposes a combination of pedestrian, bicycle, and roadway repurposing (potentially creating a betterfunctioning transit network), and support of new connections with new development or redevelopment. The modeled analysis of Largo Town Center applied to other parts of the corridor suggests that new connections permit the existing network of streets to operate at much higher levels of efficiency and reinforce the urban boulevard concepts for Central Ave and Morgan Boulevard.

Section 8 Implementation

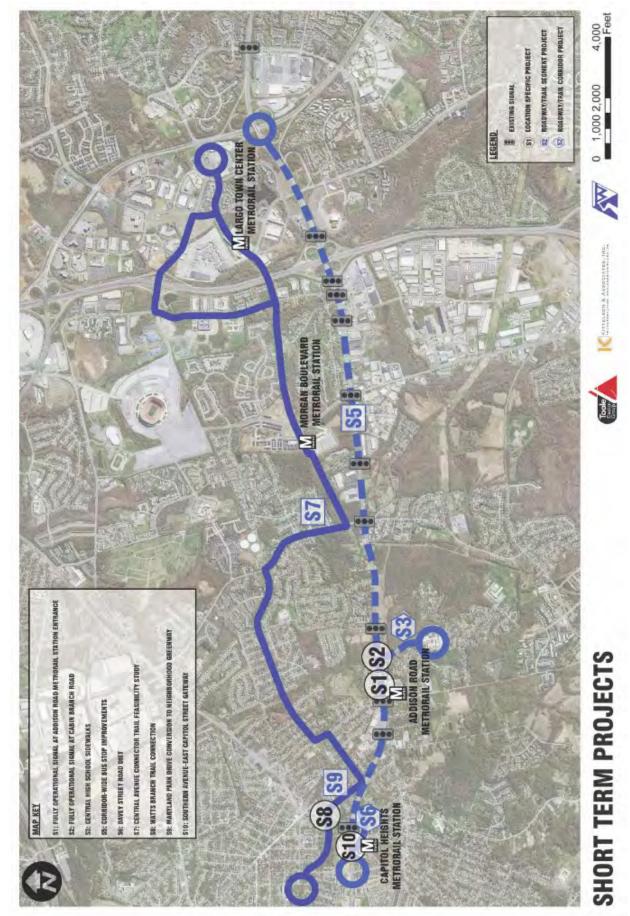
Short-Term Projects

The Central Avenue Phase 3 work resulted in the identification of short-term projects that can be implemented in the next 12 to 36 months. These projects arose from extensive field work, analysis, and public input at a series of public engagement meetings. Each of these projects is described in this document in a single page. These one-page descriptions present the project simply and with key highlights. Figure 44 shows the location of each project with a map key reference. A legend includes the name for each project and each 'one-pager' includes this Map Key.

These projects were selected and justified through a process that included field visits, public input, stakeholder agency review, and a planning level feasibility and constructability analysis. Planning level traffic analysis was completed for several projects, primarily for the purpose of determining if the recommended traffic signal or road diet is warranted. Appendix 8 includes traffic analysis results for the Davey Street Road Diet project. Appendix 9 includes planning level cost estimates for short-term projects.

Overall, the short-term projects can be characterized as:

- Offering immediate solutions to priority community-identified needs. The Subregion 4 Transit- Oriented Development Implementation Project has placed a high value on public input and on being responsive to that input.
- Can be built quicker because they are relatively inexpensive and fit within existing public right-of-way (ROW). Transforming the transportation network can take time and be costly. Working within the existing Central Avenue public ROW to make substantial progress towards building a multimodal network is a critical tactic.
- Can introduce changes to existing policy as pilot initiatives that can be tested and help to remove administrative barriers. The Central Avenue Phase 3 project proposes an approach to the transportation land use connection that builds on Complete Streets, Complete Network, and Complete Community principles. These require a change in policy and practices a process that can take time. The short-term projects identified here use existing policy in a way that supports the longer term vision for Central Avenue.


The one-page sheets that follow this introduction provide additional information on each project. These projects are ready to move towards implementation. The next steps for each are identified in Table 18.

May 2014

TABLE 18. SHORT-TERM PROJECT NEXT STEPS

Project	Next Steps
S-1. Fully Operational Signal at Entrance to Addison Road Metrorail Station	SHA to complete review of analysis.
S-2. Fully Operational Signal at Cabin Branch Road	• Review decision by SHA not to pursue the traffic signal.
S-3. Central High School Sidepath and School Entrance Improvements	 Develop a strategy for shortening the distance between signalized pedestrian crossings, especially near the Metrorail station.
S-5. Central Avenue Corridorwide Bus Stop Improvements	 Work with county DPW&T and Prince George's County Public Schools to assess field conditions and develop plan to make improvements.
S-6. Davey Street Road Diet	 Determine availability of funds in WMATA's FY 2013 CIP budget for pedestrian and bicycle transit access improvements. Use existing field work and recommendations completed in 2011 as basis for improvements. Complete field engineering site visits for road diet.
S-7. Central Avenue connector Trail Feasibility Study and Implementation Plan	 Develop strategy for a grant application from the MDOT Bikeways Program Grant and the WMATA FY 2013 CIP budget for pedestrian and bicycle transit access improvements. Determine other funding sources for the feasibility study, such as the Council of Governments TLC program.
S-8. Watts Branch Trail Connection	 Coordinate with DC DOT. Design connection in FY 2013. Apply for MDOT Bikeways grant in spring 2013 to build connection.
S-9. Maryland Park Drive Conversion to Neighborhood Greenway	 Continue to work with community groups to reach a consensus. Develop an implementation plan that includes a timeline and funding source. Identify early action items that can be completed through a Better Blocks approach.
S-10. Southern Avenue-East Capitol Street Gateway into Prince George's County	Coordinate with DC DOT.

*Note to reader: Project S4 is missing from the project list and map. This project was removed as a short-term project. The remaining projects were not re-numbered in order to preserve the number for these projects established in prior work.

Project Name

Fully Operational Signal at Entrance to Addison Road Metrorail Station

Responsible Agency Maryland State Highway Administration

Key Supporting Agencies

Prince George's County Department of Public Works & Transportation Washington Metropolitan Area Transit Authority

Project Description

This project will address safety, mobility, and access needs at the entrance to the Addison Road Metro Station on Central Avenue about 500 feet east of Addison Road. The recommendation is to install a fully operational signal that includes a pedestrian walk cycle to accommodate the heavy pedestrian flow (see Supporting Analysis below) across Central Avenue at that location. Few motorists yield to pedestrians in the current marked crosswalk. The improvements will also include a countdown pedestrian signal, high visibility crosswalk striping, and stop bars. The recommended changes would ensure this location meets FHWA best practices for installation of marked crosswalks on arterials.

This location is a high priority for the community.

It was also the location of a pedestrian fatality in the last several years.

Benefits:

- ✓ Reduces the risk of pedestrian crashes by creating time and space for pedestrians to cross the roadway.
- ✓ Ensures the marked crosswalk meets FHWA best practices.

Supporting Analysis

Traffic counts – location meets warrants for full signal: 161 pedestrians crossing MD 214 during the pedestrian peak hour, which exceeds the minimum of 133 pedestrians per hour needed to meet 2009 Manual of Uniform Traffic Control Devices (MUTCD) signal warrants.

Crash data*- as many as 75 crashes between Addison Road and the Metro station entrance, many involving pedestrians and bicyclists. Crashes at this location that are especially risky for pedestrians include motorists who are speeding and driving under the influence; and nighttime crashes that occur on wet pavement.

Estimated Cost: \$100,000

ROW Required: None

Potential Funding Resources:

- Maryland SHA funds 76 and 78
- WMATA pedestrian and bicycle funds

Responsible Agency Maryland State Highway Administration

Key Supporting Agencies

Prince George's County Department of Public Works & Transportation Washington Metropolitan Area Transit Authority

Project Description

This project will address safety, mobility, and access needs at the intersection of Central Avenue and Cabin Branch Road. Install a traffic signal that includes a pedestrian walk cycle at the intersection at Cabin Branch Road and Central Avenue. This signal will also address left turn needs on Central Avenue. Complementary improvements

include high visibility crosswalk striping and stop bars. This signal is part of a series of crossing improvements near the Addison Road Metro Station.

Benefits:

- Creates a second protected pedestrian crossing for Metrorail station access and uses the bus stops along Central Avenue.
- Provides a safer crossing for students and staff traveling to Central High School.

Photo 1. Pedestrians use this intersection to cross Central Avenue when traveling to and from the Metrorail station and Central High School.

Supporting Analysis

This location meets warrants for a signal (meets Warrant 2 and Warrant 3, Condition B). MD SHA is not inclined to support a signal because there are no line of sight issues, nor are there delays for motor vehicles turning left from Cabin Branch Road/Soper Lane onto Central Avenue.

Crash data – Up to 40 pedestrian crashes in the intersection vicinity, including a fatality.

Estimated Cost: \$125,000

ROW Required: None

Potential Funding Resources:

SHA – Fund 78, Fund 79, SRTS, Fund 84, TEP

Project Name

Central High School Sidepath and School Entrance Improvements

Responsible Agency

Prince George's County Department of Public Works & Transportation

Key Supporting Agencies Prince George's County Public Schools

Project Description

This project will address safety and mobility needs along Cabin Branch Road and at the high school entrance for students traveling to and from school. Install a sidepath on the east side of Cabin Branch Road between Central Avenue and the Central High School entrance. Install geometric and striping features at the school entrance, such as curb extensions, high visibility crosswalks, and a rectangular rapid flash beacon. This project is related to the full traffic signal proposals for the intersection of Cabin Branch Road and Central Avenue. Prince George's County Public Schools owns

the property on the east side of Cabin Branch Road. The school entrance currently lacks crosswalks and other pedestrian crossing features.

Benefits:

- ✓ Improve crossing conditions for all travelers (students, faculty, staff, and visitors) when entering or leaving the school.
- ✓ Improved walking conditions to the school along Cabin Branch Road for students living to the east.

Photo 1. Central High School entrance, looking north along Cabin Branch Road.

Photo 2. A curb extension and high visibility crosswalk such as these are recommended for the school entrance.

Supporting Analysis

Intersection Operations:

The high school entrance is the sole access point to the school for motorized traffic and one of a handful for nonmotorized traffic. The high usage rate of this entrance, and the fact that it accommodates all modes, creates potential conflicts between motor vehicles and walkers/bicyclists. No traffic controls or pedestrian crossing facilities are present to organize and support travel in and out of the school campus.

Estimated Cost: \$255,000

ROW — None

Potential Funding Resources:

- Prince George's County Public Schools Capital Improvement Program
- Prince George's County Department of Public Works & Transportation — Capital Improvement Program
- Maryland SHA Fund 78,79,84; TEP

Project Name Central Avenue Corridorwide Bus Stop Improvements

Map Key S5

Responsible Agency Prince George's County Department of Public Works & Transportation

Key Supporting Agencies Washington Metropolitan Area Transit Authority Maryland State Highway Administration

Project Description

This project will address safety and mobility needs, and will increase the overall quality of bust stops along Central Avenue by addressing poorly maintained and equipped bus stops. Specific improvements include installing ADA-compliant landing/waiting areas that are adjacent to, but not part of, the sidewalk; installing shelters and lighting at each stop; and establishing a more proactive maintenance program to reduce vegetation encroachment. In addition, some stops will be relocated in response to proposed changes resulting from the *Central Avenue Line Metrobus Study* and to provide preferable crossing locations between companion stops.

The responsibility for bus stop improvements, including on-going maintenance, is spread among several agencies, including the Maryland SHA, the Prince George's County Department of Public Works & Transportation, and WMATA.

Benefits:

- V Bus stops are better able to provide safe and comfortable points of access to/ from Metrobus and TheBus service.
- Bus stops would encourage ridership increases and reduce motor vehicle volumes on Central Avenue.

Supporting Analysis

Crashes along Central Avenue are concentrated near intersections, which are where bus stops are located. Community survey results suggest that area residents and workers would more likely ride the bus if bus stops were located closer to their homes or places of employment.

Estimated Cost:

\$12,000 to \$20,000 per stop

ROW Required:

Varies by location.

Potential Funding Resources:

- WMATA Federal Livability Grant (WMATA has applied for this grant. If awarded, 35 stops in Prince George's County can be upgraded).
- Prince George's County CIP

Project Description

This project will address safety and access needs by establishing safer places for pedestrians and bicyclists to travel to and from the Capitol Heights Metro Station along Davey Street between Central Avenue and Southern Avenue. The road diet will improve the attractiveness and multimodal functionality of the street. This project would better organize the existing roadway cross-section and include a total of two motor vehicle travel lanes, two bike lanes, on-street parking, updated sidewalks and curb ramps that meet ADA guidelines, and improved pedestrian crossing conditions with curb extensions, curve radius reductions, and high visibility crosswalks.

WAR AVENUE, LOOKING DOG

EXISTING CONDITIO

Benefits:

- ✓ Safer and easier access to the Metrorail station for pedestrians and bicyclists.
- ✓ Increased ridership on Metrorail from nearby neighborhoods.
- ✓ Improve the attractiveness and functionality of the intersection.

Supporting Analysis

Preliminary study indicates that a road diet would have little or no impact on traffic operations during the morning and afternoon peak hours.

Estimated Cost: \$689,000

ROW Required: None

Potential Funding Resources:

- WMATA Access to transit CIP funds can be used for the north side of the roadway.
- DPW&T for the remaining improvements.

Project Name Central Avenue Connector Trail Feasibility Study and Implementation Plan

Map Key

Responsible Agency

Prince George's County Department of Public Works & Transportation

Key Supporting Agencies

Prince George's County Department of Parks & Recreation Washington Metropolitan Area Transit Authority District of Columbia Department of Transportation

Project Description

This project will support safety, mobility, and access improvements along the corridor by completing a feasibility study for a trail that provides east-west connections for pedestrians and bicyclists to Metro stations and other destinations.

The trail would travel between the Capitol Heights and Largo Town Center Metro Stations, using a combination of WMATA right-of-way, neighborhood streets, existing trails, and planned trails. The feasibility study would include an implementation plan for short-term and long-term projects. The study would help determine preferred and alternate alignment of connector trails, identify short-term projects for implementation within 36 months, and develop a strategy for implementing longterm projects, including opportunities created by anticipated redevelopment and public CIP projects.

Benefits:

- ✓ As it is completed, the connector trail will provide alternate travel routes for pedestrians and bicyclists, offering a level of intra-corridor mobility that does not exist today.
- ✓ Similar trail networks have been shown to substantially increase walking and bicycling trips.

Supporting Analysis

Roadway crossings would be evaluated within the feasibility study and lead to recommendations that incorporate best practices policies for geometric design, safety, and traffic control.

Estimated Cost:

\$50,000 to \$75,000

ROW Required:

A mix of land ownership, including public land, WMATA land, and some private ownership.

Potential Funding Resources:

- MDOT Bikeways Grant Program
- WMATA Access to transit CIP funds

Project NameResponsible AgencyWatts Branch Trail ConnectionPrince George's County Department of Public Works & Transportation

Key Supporting Agencies District of Columbia Department of Transportation Prince George's County Department of Parks & Recreation

Project Description

This project extends the Watts Branch Trail from its current terminus at 61st Street NE and Banks Place NE in the district of Columbia into Prince George's county via Maryland Park Drive, establishing a connection to the trail from the north side of 63rd Street NE. The project addresses mobility and access needs in the corridor.

Reducing the number of turning movements at Banks/63rd/Southern/eastern/Maryland Park will create more predictability for all modes. The project also recaptures roadway space for pedestrian and bicycle pathways, and improves pedestrian and bicycle crossing facilities as part of the process to

determine appropriate traffic controls at the intersection. It also connects with new sidewalks or on-road bicycle treatments resulting from, or in anticipation of, the conversion of Maryland Park Drive to a Neighborhood Greenway street.

Benefits:

- ✓ Trail access between Prince George's County and the District of Columbia.
- V Builds one of the initial portions of the larger Watts Branch Trail project related to the Central Avenue Connector Trail.
- ✓ Connects with the Maryland Park Road Neighborhood Greenway conversion.

Photo 1. The trail connection can establish a visible crossing when entering Prince George's County and connect with Maryland Park Drive.

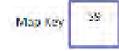
Supporting Analysis

Intersection Operations:

Geometric changes include capturing two slip lanes and their adjacent channelization islands for non-motorized transportation.

Estimated Cost:

\$261,000


ROW Required:

None

Potential Funding Resources:

- Prince George's County Parks and Recreation
- District of Columbia Department of Transportation
- MDOT Bikeway Grant program

Project Name Maryland Park Conversion to Neighborhood Greenway

Responsible Agency Prince George's County Department of Public Works & Transportation

Key Supporting Agencies Prince George's County Department of Housing and Community Development

Project Description

Safety and mobility needs will be addressed by converting Maryland Park Drive to a "neighborhood greenway" in order to manage motor vehicle traffic and improve walking and biking conditions. Meetings with adjacent and nearby neighbors and property owners to gain consensus on managing current and anticipated travel/traffic, and physical changes to the roadway and adjacent right-of-way are underway and on-going.

The area has bee studied previously by the Prince George's County Department of public Works & Transportation. The current work provides a more comprehensive approach.

Neighborhood greenways serve travel within primarily residential neighborhoods. As such, the street width is narrower and allows onstreet parking. It includes elements such as traffic circles, landscaped buffers/chicanes/curb extensions, and bikeways to discourage through motor vehicle traffic, resulting in lower vehicle speeds and volumes. Buffer areas are generally fully landscaped.

Benefits:

- ✓ This project is part of the Watts Branch Trail project and completes an important gap in the trail network.
- As a Neighborhood Greenway, Maryland Park Drive would offer a multimodal connection from adjacent neighborhoods to Central Avenue, increase safety, and reduce or eliminate cut-through traffic.

Photo 3. Potential improvement: Low-profile traffic circle.

Photo 2. Potential improvement: Street narrowed with pavement marking and center median.

Supporting Analysis

<u>Intersection Operations</u>: Evaluate roadway traffic operations and multimodal level of service (MMLOS) on Maryland Park Drive before and after improvements are made. Address access needs at Southern Avenue NE and Central Avenue.

<u>Safety</u>: Using existing crash data, evaluate existing safety problems along Maryland Park Drive and at nearby intersections. Use predictive methods to evaluate roadway safety after changes are implemented.

Photo 1. Potential improvement: Street narrowed using green streets element.

Estimated Cost: \$164,000

ROW Required: None

Potential Funding Resources:

• To be determined.

Project Name Southern Avenue – East Capitol Street Gateway into Prince George's County

Responsible Agency

Maryland State Highway Administration District of Columbia Department of Transportation

Key Supporting Agencies

Prince George's County Department of Public Works & Transportation Washington Metropolitan Area Transit Authority

Project Description

This project will address safety, mobility, and access needs at the intersection of Southern Avenue and East Capitol Street (which is entirely within the District of Columbia to plan, design, fund, and implement), and streetscape and gateway improvements on streets in Prince George's County, adjacent to the intersection.

The planned Walmart (in the district of Columbia on the northwest corner) is anticipated to generate additional pedestrian traffic at the intersection and to create an opportunity to establish an attractive and safe gateway to Prince George's County. Recommendations are aimed at improving conditions for pedestrians crossing Southern Avenue at East Capitol Street, travelling to and from the Capitol Heights Metro Station. Streetscape improvements include a continuation of the look and feel of East Capitol Street in the District of Columbia with trees and other greenspace, benches, pedestrian-oriented lighting, narrower lanes, and on-street parking. See photos to the right.

et extended

East Capitol Street extended looking east into Prince George's County.

Benefits:

- V Streetscaping and gateway features provide welcome to Prince George's County.
- ✓ Intersection is better configured and equipped to serve existing and increasing pedestrian traffic.
- New sidewalks and crosswalks on the northeast corner, so pedestrians do not have to walk in the roadway or along an unpaved path.

Supporting Analysis

<u>Intersection Operations</u>: Number of crashes between January 2008 and December 2010* range between 6 and 9.

*Crash data provided by the Maryland SHA

Estimated Cost: \$445,000 (pedestrian crossing improvements only)

ROW:

Existing right-of-way is within the District of Columbia.

Potential Funding Resources:

• Dependent upon the District of Columbia

Long-Term Projects

Achieving the long-term vision for Central Avenue will require a significant effort from many partner agencies, including DPW&T, M-NCPPC, SHA, and others. In addition to the short-term projects discussed above, this report identifies multiple long-term strategies to achieve transit-oriented development and complete streets along the corridor. These strategies range from capital projects that change the way Central Avenue and surrounding streets look and operate to policy changes that will enable and promote the type of development needed to support the transit oriented development and a vibrant local economy.

Successful implementation of these strategies will require strong partnerships between local jurisdictions, public agencies, and the private sector; no one entity has the authority or resources to achieve the long-term vision on its own. Table 19 lists the long-term implementation strategies identified in this report and the agencies responsible for implementing them. Many of these tasks will require collaboration with other partner agencies in order to be successful.

Strategy	Next Steps	Responsible Agencies
Capital Projects		
Traffic signals	 Refine timing and phasing of signals installed as short-term improvements at Addison Road Metro and Cabin Branch Road. Continue to refine signal timing and coordination to reduce pedestrian delay, pedestrian/vehicle conflicts, and provide adequate clearance time. Conduct signal warrant analyses for high crossing demand locations (e.g. Maryland Park Drive, Jonquil Avenue) Install pedestrian countdown signals. 	• SHA, DPW&T
"Road diet" on Central Avenue	 Refine existing modeling and analysis and evaluate cross section alternatives. Identify streetscape guidelines and maintenance partnerships. Complete field engineering site visits for road diet. 	• SHA, DPW&T, DDOT
Connectivity improvements	Implement street and trail connections identified in future network map to establish alternate/parallel routes to Central Avenue for all modes	• DPW&T, M-NCPPC, SHA
Regional trail connections	 Complete construction of Central Avenue Connector Trail, Watts Branch Trail, and Central High School Trails. Begin planning and design for additional trail connection identified in the future network connections map. 	 M-NCPPC, DPW&T, SHA, P&R, DCDOT, School District
Street lighting	 Identify priority locations for street lighting improvements (e.g. transit stops, high crash locations, multi-use paths) Identify funding and maintenance partnerships 	• DPW&T, SHA, WMATA

TABLE 19. LONG-TERM IMPLEMENTATION STRATEGIES AND AGENCY RESPONSIBILITIES

Strategy	Next Steps	Responsible Agencies
Transit stop improvements	 Continue short-term bus stop improvements program Identify funding and maintenance partnerships to improve sidewalks near bus stops and install shelters and lighting. Coordinate with developers to incorporate visible, high-quality transit stops into new development 	• WMATA, DPW&T, SHA
Sidewalk maintenance	 Identify funding and maintenance partnerships for ongoing sidewalk maintenance. Potentially revise County code to establish sidewalk maintenance as responsibility of adjacent property owner. 	• DPW&T, SHA
Bicycle facility improvements	 Refine and adopt bicycle network (e.g., bike lanes, trails, neighborhood greenways) identified in future network map. Enforce bicycle parking requirements in new development. 	• DPW&T, SHA
Operations and Mar	nagement Strategies	
Refine, adopt, and implement TOD checklist	 Refine and adopt TOD checklist. Incorporate TOD checklist revisions into County Transportation Review Guidelines. Train staff on checklist implementation for development review, capital improvements, and maintenance projects. 	• DPW&T, SHA, developers
Implement Adequate Pedestrian and Bicycle Facilities Ordinance	 Develop methodology. Train staff on implementation. Require multimodal connections in conjunction with all new development. 	• DPW&T, SHA, developers
Transit service improvements	 Improve transit service reliability. Evaluate opportunities to increase directness of bus routes. 	• WMATA
Access management	 Revise County code and Transportation Review Guidelines to encourage shared access strategies. Identify opportunity locations to consolidate existing driveways and curb cuts to improve pedestrian and vehicle safety. 	• DPW&T, SHA
FedEx Field Green Travel Options	 Coordinate with NFL and FedEx Field management to encourage walking, biking, transit, carpooling, and other "green travel options for games and other events. 	 NFL, FedEX Field management, DPW&T, WMATA
Policy Strategies		
Parking maximums	 Revise County code to establish parking maximums for developments within 0.5 miles of rail or high frequency transit 	• DPW&T, developers

Strategy	Next Steps	Responsible Agencies
Mid-block crossing policy	 Develop process for evaluating benefits and risks of midblock crossing locations Adopt policy documenting midblock crossing evaluation and approval process Identify priority locations for midblock crossing improvements (e.g., rail or bus stations, schools, trail crossings) 	• DPW&T, SHA, WMATA
Connectivity and block length requirements	 Revise County design standards to encourage a connected street network. Revise County Code to establish recommended maximum block lengths to maintain walkability. 	• DPW&T
Sidewalk requirements	Revise County design standards to require sidewalks on both sides of all new streets in TOD and urban areas	• DPW&T
Complete Streets policy	 Develop and adopt Complete Streets policy based on TPB template. Refine and adopt Complete Street and trail typology and typical sections. Refine and adopt future network map. Refine and adopt complete streets design "toolkit" to streamline design approval/exception process. 	 DPW&T, SHA, M-NCPPC

Appendix 1 Public Involvement Summary

Consolidated Project Participation Plan (September 28, 2011) Revised by M-NCPPC October 13, 2011

1A. Initial Station 1.	TASKS	KITIELSON TASKS	OUTREACH PER TASK	SCHEDULE	RESPONSIBLE PARTY(IES)
Area and Corridor A Assessment A	1. Technical Analysis: Traffic Analysis	1. Project Scoping & Kick-off	Design and establish standards for a project website, Facebook page, and format for other informational materials	Sept - Oct 2011	AECOM: design of website RHI: design of Facebook page AII: Identification of other info- materials needed (see attached list of potential items)
					M-NCPPC to host and maintain sites
18. Background and 1. Data Review A.	1. Technical Analysis: Traffic Analysis (cont)	2. Background Review & Coordination	Announce project on website, Facebook, etc.	Oct 2011	All teams submit introductory info (project intro, schedule, outreach approach, etc.)to M-NCPPC webmaster to post
			County to compile major outreach findings from earlier studies by area (lessons learned)	0ct 2011	M-NCPPC project staff
			Define role of, and appoint, Project Advisory Committee (PAC)	Oct 2011	M-NCPPC to discuss with teams; M-NCPPC to invite participants
			Hold initial PAC meeting	Oct 2011	M-NCPPC staff to host; key team members to attend
				Nov 15th	

AECOM TASKS SABRA WANG TASKS		1C. Corridor-wide1. FechnicalMarket Assessment;Analysis: CrashAnalysisID. EconomicDevelopment	Strategies			24. Identify Catalytic Technical Analysis: Projects; Multimodal LOS;
3 KITTELSON TASKS		3. Existing Conditions Analysis				ysis: 4. Complete Streets 05; Policies + Sections;
OUTREACH PER TASK	Conduct initial stakeholder meetings	Hold additional key stakeholder meetings to identify issues, opportunities and potential recommendations	Design and post on-line survey/mapping exercise to identify physical points of concern in corridor and new visions for corridor	Plan and conduct PAC walking tour	Hold 2 public meetings (E and W sections of corridor): • Education/info • Findings to date • Public input on existing conditions and ideas to be considered • Post findings on website and Facebook	PAC meeting to review findings to date and help
SCHEDULE	Oct 2011	0ct - Nov 2011	Oct 2011	Oct 2011	Nov 2011 West Nov 29 th East Dec 8 th back up date Dec 6th	Jan 2012
RESPONSIBLE PARTY(IES)	Each team to work with M-NCPPC project staff to identify stakeholder groups; produce a separate stakeholder schedule/who is responsible for each meeting; announce meeting dates to all teams so that they can participate as appropriate	As needed by each team	Kittelson to lead effort with input from others	Kittelson to lead; others to participate as necessary	AECOM and Kittelson to jointly collaborate with M-NCPPC project staff to plan these sessions; teams to provide input for postings to M-NCPPC staff (<i>Note: content emphasis might differ at each meetings based on extent of previous work in that area to date</i>)	M-NCPPC staff to organize meetings; AECOM and

AECOM TASKS	SABRA WANG TASKS	KITTELSON TASKS	OUTREACH PER TASK	SCHEDULE	RESPONSIBLE PARTY(IES)
28. Draft Access and Circulation Plan	Recommendations and Cost Estimates	5. Transport. Network Functional Overlay;	and alternative concepts (Note: could be 1 or 2 sessions based on level of content for each session)	Jan 12th East Jan 19th	for, present at, and elicit feedback on findings in order to move on to next tasks
		6. Alternatives Analysis + Preferred	Regular Website/Facebook postings	Dec 2011 - May 2012	M-NCPPC webmaster with input from teams
		Concept	Hold 2 Public Meetings (E and W sections of corridor) in workshop format to	Feb - Mar 2012	AECOM and Kittelson to jointly collaborate with M-NCPPC project staff to plan these sessions
			define/map stations development sites and	West March 6 th	
			scenarios, and provide input		
			on complete street alternatives leading to a preferred concept	East March 8th	
3A. Financial	(work completed)	7. Implementation	PAC meeting(s) to review	Apr 2012	AECOM and Kittelson to jointly
Feasibility;			draft implementation	Apr 5th	collaborate with M-NCPPC project
			Tecoli III technologi		לכלווחופבים וחו בומוב וחו אומונים
38. Implementation Strategies;			Key stakeholder review meetings to review recommendations	Apr 2012	Each team to identify stakeholder group meetings needed
3C. Draft and Final Priorities and Strategy Report			Two public meetings (E + W) to review and comment on recommendations. (An Open House format with	Apr – May 2012 Weet	AECOM and Kittelson to jointly collaborate with M-NCPPC project staff to prepare for session
			presentation might be useful for this session)	May 1 st East (if not joint) May 8th	
			Planning Board and Elected Official Briefings	Jun 2012	AECOM and Kittelson to jointly collaborate with M-NCPPC project staff to prepare for briefings

CENTRAL AVENUE BLUE LINE CORRIDOR IMPLEMENTATION

Public Meeting #1: Eastern Communities December 8th, 2011 from 6:45 to 8:45 pm Prince George's County Sports and Learning Complex

Part 1. Introductions and General Orientation

6:45 – 7:30 pm

- SIGN IN AND BROWSE EXHIBIT STATIONS
- WELCOME AND INTRODUCTIONS
- DESCRIPTION OF TONIGHT'S SESSION/INTRO TO INITIAL DISCUSSION
- INITIAL TABLE DISCUSSION (10 minutes)
 - Introduce yourself to the people at your table and describe:
 - Why have you come? What brought you to the meeting?
 - Where you live (place a dot & your first name in this location)?
 - How long have you lived in this area (write # next to dot)?
 - How you usually travel around this area: on foot, by car, by bike (show of hands)?
- MNCPPC PROJECT OVERVIEW
 - o Sub-region 4 Master Plan Status and key recommendations
 - o Implementing the Plan
- TABLE #2 DISCUSSION (5 minutes)
 - Have you been previously involved in the Subregion 4 planning process (show of hands)?
 - What are the 2 most important outcomes that you would like to see from this implementation effort (note on the table map)?

Part 2. Complete Streets and This Corridor: Presentation

7:30 - 7:50 pm

- PRESENTATION: PART 1
 - What are Complete Streets?
- PRESENTATION: PART 2
 - o Key Issues & Opportunities in this Corridor

Part 3. Role Playing Exercise: Focus on Corridor Experience

7:50 - 8:30 pm

- INTRODUCTION OF TABLE EXERCISE #3
- COMPLETE STREETS FROM A MODE/USER PERSPECTIVE

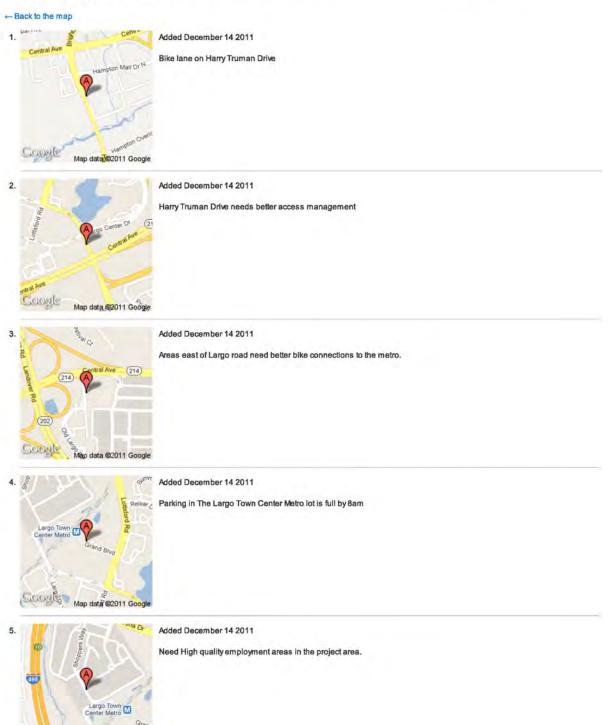
(Pick one of the "role cards" at your table. For the role you have chosen, answer the questions below. Then, be prepared to discuss your responses to the questions. Think about how you use the corridor today AND how you might want to use it in the future as the plan is implemented.)

Imagine that you are a <u>pedestrian</u> in this area:

- 1. As a pedestrian here, what are your 3 major concerns?
- Which are these streets are you most comfortable and uncomfortable walking on and why? (green marker)
- 3. Which intersections in the area need to be improved? (red marker)
- Now, imagine that you are a motorist or freight/truck delivery person in this area:
 - 1. As a driver, do you feel it is easy or difficult to get through this area?
 - 2. As a driver, which intersections in the area need to be improved?
 - 3. As a delivery person, is it easy or difficult to make deliveries here?
- Now, imagine that you are a <u>Metro-rider</u> in this area:
 - 1. Which station would you prefer to use and why?
 - How easy is it to get to this station from where you live? Would you walk, take the bus or drive? If you walk, which route would you take?
- Now, imagine that you are a <u>bus rider</u> in this area:
 - 1. What do you like most and least about taking the bus in this area?
 - 2. Which bus stop are you likely to use from your house? Is this convenient?
- Imagine that you are a <u>biker</u> in this area?
 - 1. Is this an easy area to bike in (Yes/No)? Why do you say that?
 - 2. What streets do you feel comfortable/uncomfortable biking on?

Part 4. Recap and Next Steps

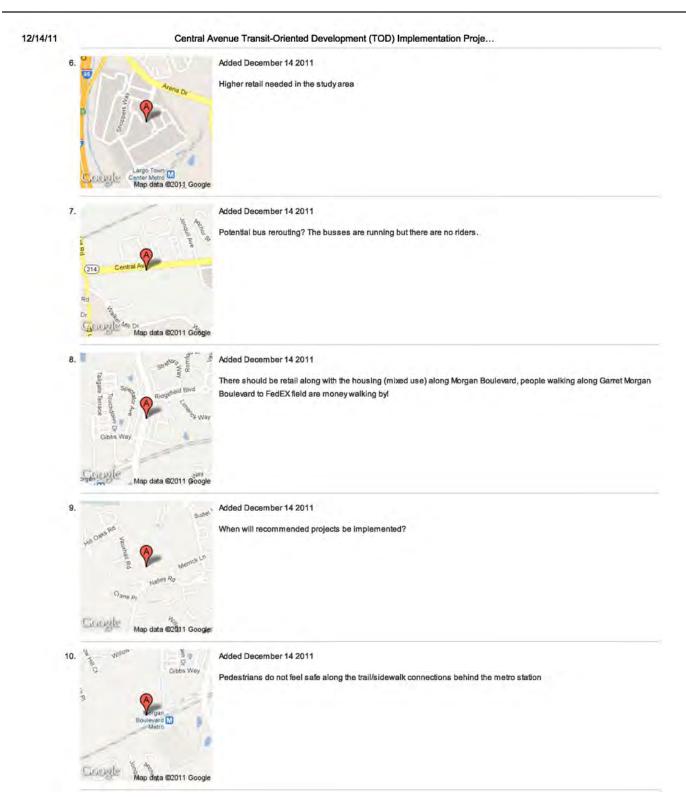
8:30 - 8:45 pm

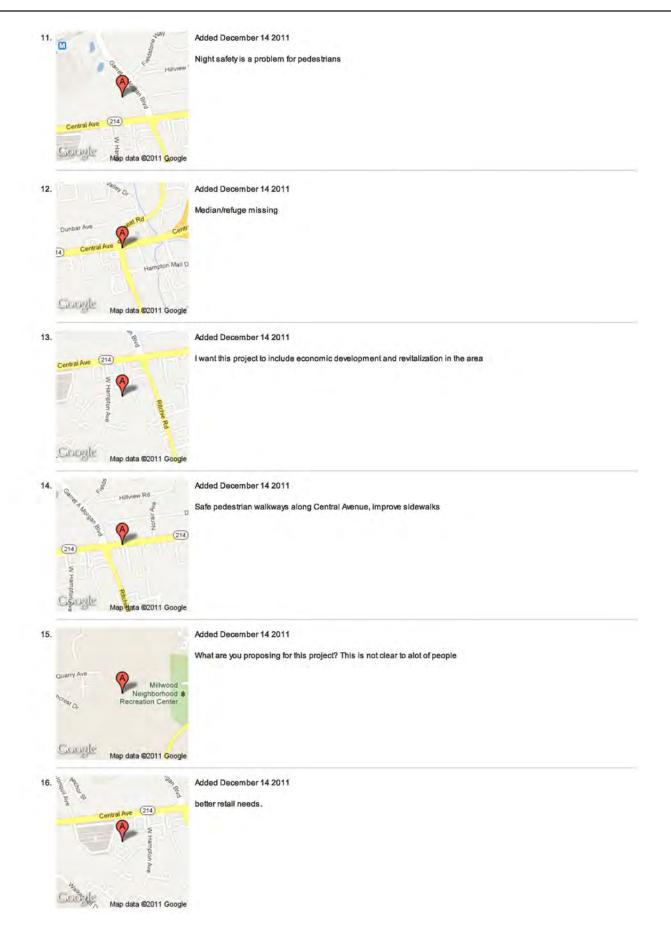

- REPORTING BACK AND COMMENTING
 - o One representative from each table will summarize the major results
 - of the role-playing exercise and state any preferences for the opportunity areas
 - o Any other questions or comments?
- NEXT STEPS

12/14/11

Central Avenue Transit-Oriented Development (TOD) Implementation Proje...

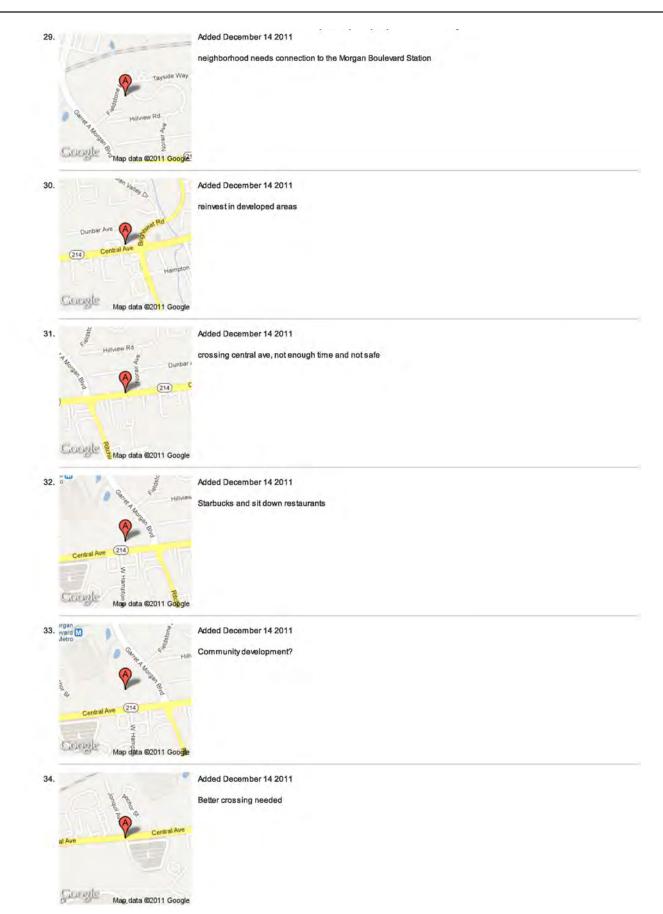
KITTELSON MAPS

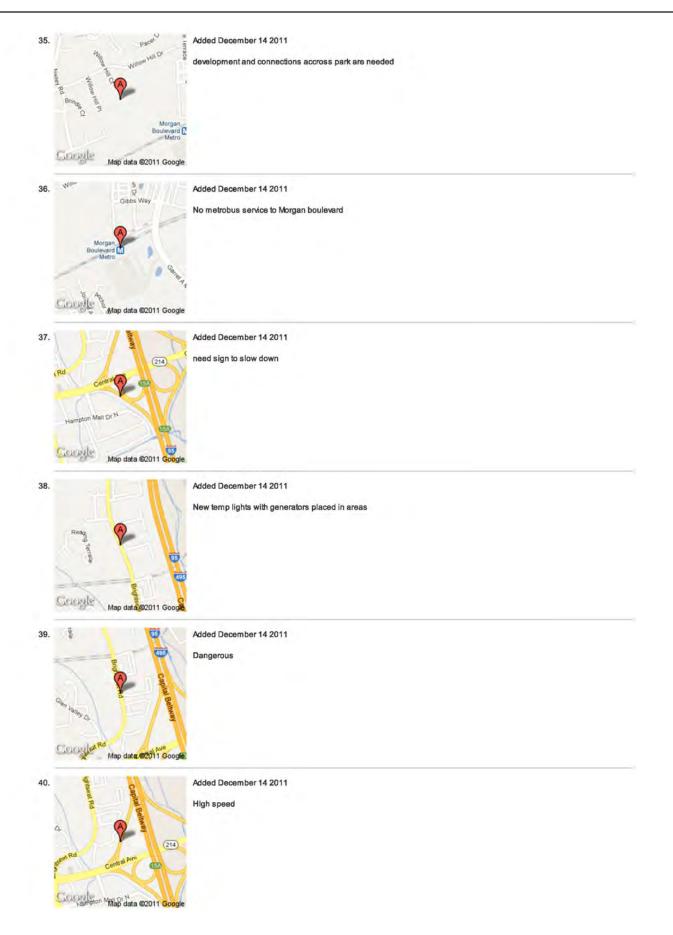

COMMENTS FOR "CENTRAL AVENUE TRANSIT-ORIENTED DEVELOPMENT (TOD) IMPLEMENTATION PROJECT"

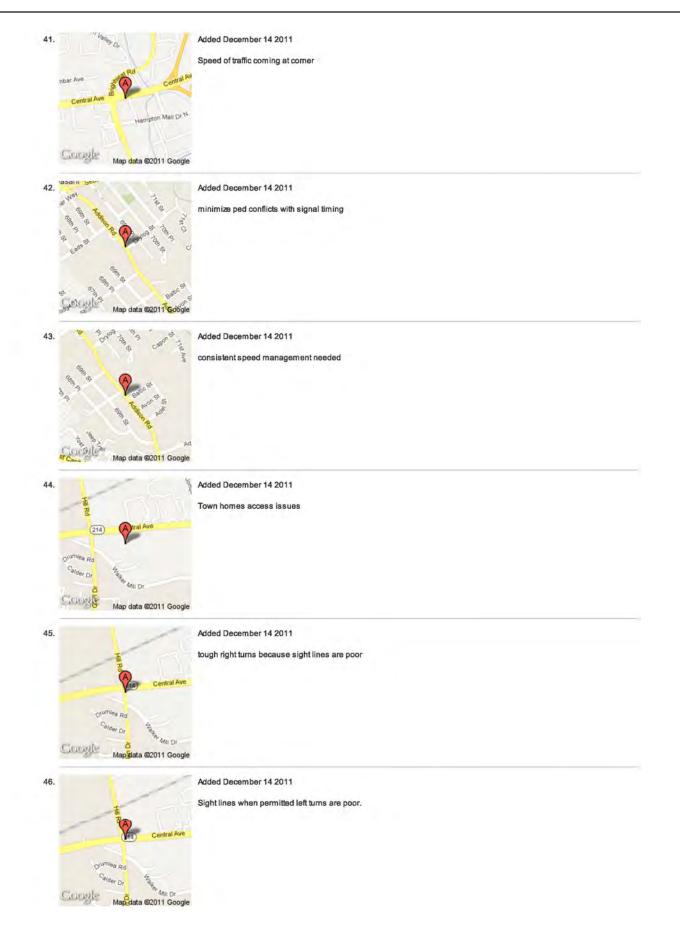


map.project.kittelson.com/maps/65/admin

Map data @2011 Google


Gaagle





54.	X	Added December 14 2011 Midblock crossing
55.	X	Added December 14 2011 Bike lanes
56.	X	Added December 14 2011 better streetscape and maintenance
57.	X	Added December 14 2011 Bike lanes
58.	×	Added December 14 2011 Neighborhoods are better walking with less trafficand with sidewalks
59.	×	Added December 14 2011 Planned shopping center
60.	×	Added December 14 2011 Neighborhoods are hilly, Capital Avenue is the most direct
61.	×	Added December 14 2011 Building here that is potentially being renovated
62.	×	Added December 14 2011 existing school bus stop
63.	X	Added December 14 2011 existing speed bumps
64.	X	Added December 14 2011 No walking on Central

65.	Added December 14 2011 Wider sidewalks and school bus stops needed on Central
66.	Added December 14 2011 Rolling Ridge drive can be a bypass of Addison/Central
67.	Added December 14 2011 Add signal
68.	Added December 14 2011 Raised crosswalk or bridge
^{69.}	Added December 14 2011 need to slow down cars, lots of pedestrians
70.	Added December 14 2011 Existing bus stops no bus stops
71.	Added December 14 2011 Need to locate bus stops at intersections, hard to see sidewlakers
72.	Added December 14 2011 Sidewalks on Addison and better lighting and drainage
73.	Added December 14 2011 Potential to widen addison with new development
74.	Added December 14 2011 New connection to Karen Boulevard
75.	Added December 14 2011 Congested Intersection

76.	×	Added December 14 2011 Make 1 way?
77.	X	Added December 14 2011 Pedestrian bridge? Tunnel?
78.	X	Added December 14 2011 bigger median Island needed
79.		Added December 14 2011 Connection to bus stop?
80.	×	Added December 14 2011 Bikes on Addison (Maine Roule)
81.	×	Added December 14 2011 Signal timing changes (congestion on Addison)
82.		Added December 14 2011 New connectiuon between Yolanda and Addison Road
83.	×	Added December 14 2011 Right turn from old Central to Central is a problem for pedestrians.
84.	X	Added December 14 2011 East Capitol street has alot of intersection and no turn lanes.
85.	×	Added December 14 2011 Sight distance problem due to Hill

86.	X	Added December 14 2011 More local desitinations for people to walk to.
87.		Added December 14 2011 connect Karen Blvd to Peppermill Drive
88.	×	Added December 14 2011 Ped or traffic signal needed
89.		Added December 14 2011 Right turn conflicts.
90.	×	Added December 14 2011 people are speeding and changing lanes
91.	×	Added December 14 2011 Ped signal at addison crosswalk needs improvement
92.	×	Added December 14 2011 No left turn signals
93.	×	Added December 14 2011 Policy discussion on maintenance of streetscape and other improvements
94.		Added December 14 2011 Need for sidewalks on Addison road and not just in front of the new development. There are also right-of-way issues.
95.	×	Added December 14 2011 Corridor wide way-findings and identification signage

-

96.		Added December 14 2011 Rollins Avenue has no space for walking, poor lighting, no sidewalks, potetial widening of road. There are new townhouses but lack connectivity.
97.	X	Added December 14 2011 Dead end streets are a potential problem for safety vehicles: Bulgar Street, Bolsan Street, Uline Street
98.		Added December 14 2011 Useless traffic signal at crown street and Central Avenue
99.		Added December 14 2011 Better Street signage
100.		Added December 14 2011 Any further development proposed?
101.	X	Added December 14 2011 Retiming durring peak periods
102.		Added December 14 2011 Better Bike Storage
103.	X	Added December 14 2011 Reliming durring the peak periods.
104.		Added December 14 2011 Set speed limits to be consistent
105.		Added December 14 2011 Retiming durring peak periods
106.	×	Added December 14 2011 Poor signage

-

107.	Added December 14 2011 Need a left turn light
108.	Added December 14 2011 Vehicles passbyon the right at Walker Mill and Addison.
09.	Added December 14 2011 Red light runners
10.	Added December 14 2011 Cars driving too fast
	Added December 14 2011 Cars driving too fast.
12.	Added December 14 2011 Need to improve-lighting and downhill grade are a problem
13.	Added December 14 2011 rear end accidents concern for left turners at Addison Rd./Wilburn Drive.
14.	Added December 14 2011 signal coordination along East Capitol street for traffic calming
15.	Added December 14 2011 NO Sidewalks
16.	Added December 14 2011 The street suddenly changes from two lanes to one lane travelling southbound, there needs to be warning signs.
17.	Added November 18 2011 Hard to cross the street here. Cars never stop!

Central Avenue Stakeholder Interview Summaries

Prince George's County Parks and Recreation

OVERVIEW OF PROJECT

- There are opportunities for trails to be a part of the new transportation network in the corridor, providing routes for pedestrians and bicyclists other than Central Avenue itself. This project includes short- and long-term opportunities that will support anticipated TOD development. The team reviewed preliminary design concepts for several Opportunity Areas:
 - Maryland Park Avenue connection to the Watts Branch Trail
 - Central Avenue Connector Trail to the Morgan Boulevard and Largo Town Center Metrorail stations
- Several trails projects within the corridor may benefit from work on the implementation plan, including:
 - o land acquisition for the Chesapeake Beach Rail-Trail
 - o construction of segments of the Cabin Branch Stream Valley Trail
 - o other neighborhood trail connections

KEY ISSUES

- DPR preference for a trails network that serves destinations. Top priority is to provide access to recreation facilities and parks.
- DPR supports designating trails for transportation, because the maintenance then falls to others, such as public works, SHA or private property owners. Need to establish an MOU with the agency that has maintenance responsibilities.
- As trails are used and considered part of the transportation system, portions need to be lighted. This will require developing a set of criteria to determine when and where lighting and other safety features are needed. Examples of trails with lighting include the trail to the West Hyattsville Metrorail station, the trail to National Harbor, and the trail connecting UMD student housing in University Park to the campus.
- Trail crossings of major roads such as Central Avenue, Southern Avenue, Arena Drive, and Morgan Boulevard need to be addressed in Opportunity Area concept plans.

• More information is needed on the proposed consolidated Parks and Recreation offices complex on the M-NCPPC property near the Morgan Boulevard Metrorail station.

FOLLOW-UP, RELEVANCE TO THE PROJECT

- Chuck Kines or Eileen Navaro can provide long range travel forecasting.
- Better understand inter-agency requirements, needs and opportunities when designating a trail for transportation.
- Address the need for trail lighting
 - o See if lighting CIP project can be used for trails, not just for recreation facilities.
 - Develop/recommend criteria to determine where to light trails. Current process is location-specific and does not use an established set of criteria. Toole Design Group has established a recommended set of criteria, based on research of existing trails that are lighted and work on the W&OD Trail in Virginia.
 - Revise design concepts for Opportunity Areas to include trails crossings.

District Department of Transportation (DDOT) and District of Columbia Office of Planning (DCOP)

EAST CAPITOL STREET PEDESTRIAN SAFETY STUDY

- DDOT is currently performing an East Capitol Street pedestrian safety study from Minnesota Avenue to the District line. The study will be finished in April of this year (approximately). See the project website for additional information: http://www.kls-eng.com/EastCapitolStreet/.
- The preferred alternative is to implement full-time parking along the entire corridor, which would result in two through lanes and bike lanes in both directions. The cross section dimensions will be:
 - o 10' inside lane
 - 11' outside lane
 - o 5' bike lane
 - o 8' parking lane
- The project will also add several pedestrian signals and/or HAWK signals.
- Looking at curb extensions on East Capitol at several location to lock it into 2 lanes in each direction.
- DDOT analysis showed that historical traffic trends on the corridor are negative, with ADT approximately 5,000 lower than it was 10 years ago.
- Capacity analysis generally shows that the corridor works adequately with a road diet. The critical intersection is Benning/East Capitol which requires reconfiguration, but otherwise operations look good. Benning/East Capitol also needs to accommodate streetcar, which complicates things.
- DDOT standard is LOS D, but this standard was applied only to existing conditions and not 2037 (2037 model shows everything failing regardless of the option chosen). DDOT's primary criteria is that changes do not degrade operations from current conditions.
- DDOT/DCOP would welcome M-NCPPC assessing the potential for a road diet on East Capitol Extended/Central Avenue. This would hopefully assist in changing the built environment and would also encourage drivers heading into the District to slow down due to the perception of coming into a denser, more urban environment. Buildings closer to the street will help to convey the vision for the corridor that the District would like to see.

CAPITOL HEIGHTS WAL-MART

 Current plan for Wal-Mart has all access from East Capitol Street. There will be no access from Southern Avenue. Primary access point will be via a new signal on 58th Avenue.

- DDOT is not currently looking at major changes to Southern Avenue/East Capitol, although they
 recognize the need for pedestrian improvements.
- The development will include some satellite retail, but not street-fronting. Early renderings show the development from the street as "looking similar to a school".
- Development is "by-right" and does not require any zoning changes. As a result, DDOT is limited in the amount of improvements that they can condition on the developer.
- Primary pedestrian route to the Wal-Mart from the Metro is being planned, including need for pedestrian access improvements (bulb-outs, etc.)
- DDOT has asked Wal-Mart to look into an underpass of Southern Avenue/East Capitol Street, but this is considered unlikely.
- Improvements from Wal-Mart may include Far Northeast Livability Study recommendations.

GENERAL

- DDOT has no specific criteria for road diets. However, they actively seek opportunities to use road diets to (1) slow vehicles based on impact to pedestrian safety and (2) provide bike accommodations.
- DC recently completed a TOD plan, and would be interested in knowing any M-NCPPC plans for Capitol Heights
 - Park & Planning has designated Capitol Heights as a Community Center.
 - DCOP will provide additional information on the TOD Plan to M-NCPPC.
- DDOT is generally fine with 10' travel lane, but prefers 11' next to bike lanes when there is a transit route. Typical lane width of 10' always preferred for interior lanes.
- Given the difficulty of accommodating bikes comfortably on Central Avenue, DDOT suggested the potential for the Central Avenue project team to consider a wide side-path instead of bike lanes.

Department of Public Works and Transportation (DPW&T)

MULTIMODAL IMPROVEMENT OPPORTUNITIES

- DPW&T is interested in working with M-NCPPC and SHA on a long-term access management approach.
- DPW&T noted that the section of Walker Mill Road abutting Walker Mill Regional Park was improved with bike lanes and sidewalks recently. The project team will field-check to ensure that this is reflected accurately in our maps.
 - DPW&T is open to providing bus stop improvements, but would generally ask for joint costsharing with another entity (e.g., transit agency, developer).
 - TheBus has a shelter contract, and where there is high demand will work with the contractor to install shelters. DPW&T noted that The Bus has had difficulties in the past obtaining access permits from SHA.
 - DPW&T suggested that this project could be an opportunity to smooth the process of getting permits from SHA to place shelters.
 - DPW&T policy is for continuous lighting on all county roads, but SHA only lights intersections.
 DPW&T is very interested in having some type of lighting on Central Avenue at non-intersection locations.
 - On Maryland Park Drive there has been a back and forth related to speed bumps. Divided opinion for neighbors on the same street. DPW&T is generally very open to a range of traffic calming mechanisms, and has a neighborhood traffic management program to deal with requests.
 - DPW&T is increasingly looking to connect bike facilities wherever possible. They see parallel bike routes to Central Avenue as a priority.
 - Issue of sidewalks on state routes has been an issue for DPW&T. DPW&T does not have resources to maintain them with the current capital budget. DPW&T is happy to maintain any new sidewalk on County roads.
 - The County recently received a Safe Routes to School grant and 3 of the 5 schools are in the general area: Oak Crest, Highland Park and Gray. DPW&T is making improvements to sidewalk connections in the vicinity of these schools.

DEVELOPMENT REVIEW

- In general, several large developments along the corridor are currently installed. Several of these would be required to make significant frontage improvements.
- Additional coordination is needed between M-NCPPC, SHA and DPW&T on development projects that are in the pipeline.
- DPW&T is open to using agreements with community organizations to maintain streetscaping.
 There will be development on this corridor, and this is likely to be an issue.
 - o Good idea to seek HOA/BID arrangement to assist in maintenance needs
- DPW&T noted the need to be realistic about approaching funding and implementation, and identify needed legislation to make it happen.
 - M-NCPPC is currently working with DHCD to designate the corridor as a sustainable community. Hopefully has the potential for funding eligibility.
- Developers talk to DPW&T and SHA before they buy property and want to find out what they
 are going to be required to construct. The standard response from SHA and DPW&T needs to
 reflect the outcomes of this study so that it is communicated to developers early-on. Needs to
 be a hard link between DPW&T, SHA and M-NCPPC when a developer comes to talk to the
 County.

SITE SPECIFIC IMPROVEMENTS

What does Central Avenue project team need to do to justify these type of improvements?

- Traffic counts at a minimum and show operations
- Need to show that there is no deterioration of operations as a result.
- Provide basic information to DPW&T and let them comment

Maryland Park Drive

- Some hesitation with closing Maryland Park Drive. Need to see numbers on how traffic would re-route, and how that would affect operations.
- Meetings with the community show that there are 2 factions, with some concerned about direct access and other concerned with traffic volume/speed. Would want to review proposals in more detail.

Addison Road Metro

DPW&T will review Phase 2 suggestions in more detail and provide comments.

Maryland State Highway Administration (SHA) and Maryland Department of Transportation (MDOT)

ACCESS MANAGEMENT

- The consulting team wants to address the needs of MD SHA in terms of Access Management along the corridor
- The State cannot close existing driveways without financial compensation. Only when a site plan
 is submitted for a change in land use does the State have a 'free' opportunity to close access
 points.
 - SHA formerly had a capital fund to purchase access control from willing sellers. They are still developing the access management plan for this but no money is available for purchases anymore.
- To implement a long-term access management plan, requiring specific frontage improvements/ dedication, the District, Regional Planning and Access Management would need to be involved.
- The consulting team wants to find a process for implementing access management strategies for when they have a better handle on the typical cross section. However, since a typical cross section has not been decided on it is difficult for SHA to say what will be needed.

FUTURE CROSS-SECTION ALTERNATIVES

- DDOT will implement a permanent road dies along East Capitol Street from Minnesota Avenue to Prince George's County Line
- A future roadway cross-section/ right-of-way envelope was discussed. SHA would like to review the travel forecasting technical analysis and proposed geometry.
- The County would need to produce a sectional plan amendment as well as an updated County
 priority letter with Central Avenue moved near the top to initiate a formal Project Planning
 study.

POTENTIAL EXAMPLE LOCATIONS

- MD 64
- MD 510
- MD 201-from MD 450 to MD 410-Part of the communities and safety program
- MD 4 Forrestville Road to MD 458- attempting to change the principal arterial functional classification, added midblock crossing and channelized pedestrians, residential on one side of the corridor and commercial on the other.

POTENTIAL FUNDING

 Kate Sylvester identifies that the Maryland Bikeways Program can potentially fund some of the bicycle improvements on local roads. The program plans to fund \$4 million per year for 2013 and 2014. MDOT has a new bikeway improvement program that can fund bike facilities on both State and local roadways, which will be a competitive pool of up to \$4 million per year.

LIGHTING AND TRANSIT SHELTERS

- SHA does not construct continuous lighting on roadways but requires warrants for roadway lighting along certain segments.
- SHA will construct continuous roadway and ped lighting as part of a project only if the County contributes funding and agrees to maintain it.
- DPWT's current policy is to continuously light all County roadways, while SHA's policy is to provide lighting only at intersections. DPWT has requested continuous lighting along Central Avenue

ADA RETROFIT FUND

- SHA has a GIS database for ADA compliance needs.
- SHA has issued a design guideline as part of the "Access to Transit Program" for bus stop landings. The guidelines are based on speed and volumes of the busses.

SHORT-TERM IMPROVEMENTS

- Signal timing/ phasing improvements (cycle lengths, advanced WALKs, protected left-turns) should be sent by the County through the District Office for discussion with the Office of Traffic
- Short-term access management changes not related to driveway closures (e.g. side street or median closures) need technical analysis to identify operational impact of diverted vehicle traffic volumes, and this should be sent by the County to SHA Access Management
- The County can widen the sidewalk along Central Avenue at any time, provided there is available right-of-way, they fund it, they submit plans for SHA review and obtain permits.
- The SHA's policy on enhanced and/ or continuous lighting is that it needs to be supported by a
 photometric analysis and warranted based on safety needs. The County can build and maintain
 additional lighting (vehicle or pedestrian scale) along MD 214 assuming they pay for it, provide
 the technical analysis andobtain the required permits.
- ADA deficiencies this request should go through the Office of Highway Development (Lisa Choplin) which maintains a GIS database of ADA deficiencies and has several separate funds (including an access to transit improvements).
- Improved mid-block pedestrian crossings (signing, crosswalks, flashing beacons, pedestrian signals) should be sent to the District
 - Enhanced crosswalk treatments such as synthesized colored asphalt are approved by SHA and can be implemented pending approval from the District.
 - Colored lanes for bicycles and/ or off-peak restrictions for bus and bicycle may be considered
 - New traffic signals send completed warrant analysis to District 3
 - Safety improvements such as additional crash cushions or revised lane assignment
 through the I-95 interchange should be requested to the District.

Washington Metropolitan Area Transit Authority (WMATA)

PEDESTRIAN ACCESS TO METRORAIL

- Project team summarized several potential projects along corridor, including significant changes at Davey Street. Most of the crossings are unmarked, roadway narrowing to add sidewalks and slow traffic. Also discussed the intersection of Davey/Southern Avenue.
 - Analysis should consider current pedestrian access to the station? Priority should be on locations with largest potential for improvement.
 - o Pedestrian safety is a good motivation for identifying projects as well.
- WMATA supports improved access and safety for pedestrians, and WMATA has created implementation plans and projects to fund highest priority improvements. WMATA typically does not fund improvements outside of their property.
- Bike/Ped Plan identified \$28M of needs and only \$6M of funding. Metro is looking for local jurisdictions to take the lead on funding projects.
- WMATA is making crosswalk curb cut improvements at 5 stations currently. Our stations are not
 in the current 5. Recently built a sidewalk at Largo Town Center. Main criteria are high ridership,
 short-distance park-and-riders, and other factors that indicate high cost-effectiveness.
- Exploring mechanism to provide funding off Metro property, but haven't done this. Have not
 explored cost-sharing with other implementing agencies in detail yet for off-site pedestrian
 improvements. Currently there isn't a formal process for cost-sharing agreements.
- FTA allows use of federal money for bike/ped improvements, but there is no specific federal money for this purpose.

BUS STOP ACCESS IMPROVEMENTS

- Inaccessible bus stops are a key priority for WMATA Board
- WMATA recently received a \$1.2M FTA New Freedom capital grant is to improve ADA access to fixed route bus stops. Need to show that it will increase disabled use of the bus system. Money set aside to identify prioritized locations. Estimated \$20-25k per bus stop.

 Don't have detailed stop level bus ridership, but currently working on that using Automatic Passenger Counter data.

CAPITOL HEIGHTS/WAL-MART

- WMATA has not heard a lot of desire for a pedestrian tunnel, and doesn't see it as likely. The cost would be at least \$15M cost.
- WMATA has no particular criteria/policy on new station entrances. It depends on available funding. In addition, it would need to be designed in a way that it is very easy to police. WMATA would be unlikely to take on policing of a new tunnel unless the design minimized safety risks.

MORGAN BOULEVARD

- WMATA feels that there is a great opportunity for TOD at Morgan Boulevard using WMATA and M-NCPPC land. This is a high impact opportunity.
- Fiscal impact analysis of Cameron Crossing development would be useful. Residential may be beneficial to the County tax revenues.
- Trail connections:
 - WMATA would not build a trail near Morgan Boulevard until a TOD takes place, because WMATA would not want to constrain future development opportunities.
 - WMATA is not opposed to a trail on top of Metro alignment, but it would need a lot of feasibility analysis.

CLOSE-OUT

- WMATA would like to think about complete networks more than just complete streets. Buses
 and bikes do not always need to be on the same street.
- WMATA suggested that many jurisdictions have great transit ideas, but then ask others fund them, and that doesn't work. Host jurisdiction needs to dedicate their money to demonstrate their own commitment.
- WMATA suggested that one way of analyzing pedestrian and bicycle improvements is through cost-effectiveness. Recognizing that DPW&T is resource constrained, pedestrian and bicycle improvements may be significantly cheaper than accommodating the vehicle trips that would otherwise occur.

Appendix 2 Policy and Standards Review

CENTRAL AVENUE-METRO BLUE LINE CORRIDOR (TOD) IMPLEMENTATION PROJECT

Complete Streets Policy and Issues Summary

Specifications and Standards for Roadways and Bridges (DPW&T)

- "New roadway construction or reconstruction <u>shall</u> result in roadways that are safe and that promote mobility for auto, pedestrian, bicycle, public transit, and all other elements of the traveling public."
- "Where possible, each street should be extended to intersect another street or to be intercepted by other streets...to eliminate any need for a cul-de-sac."
- "...sidewalk construction is required on both sides of arterial, collector, and industrial roadways with no
 exceptions." The standard is much less rigid for residential streets, and is tied primarily to length of culde-sacs.
- "The Department supports design criteria that promote minimum traffic volumes and lowest possible speeds on residential streets."
 - Includes standard design details for multiple traffic calming features, including speed humps, raised crosswalks, neighborhood traffic circles, speed reducing islands, pedestrian crosswalk islands, chokers, diverters, semi-diverters, and intersection tables.
 - States that a "discontinuous street patter is also desirable, provided that the maximum travel distance from the furthest residence to the nearest collector road is limited to 0.5 miles and that a motorist need not make more than three turning movements"
- "Shelters <u>shall</u> be installed adjacent to those established County transit and Metrobus stop locations where County transit planners and project engineers deem such construction feasible and cost effective."

County Zoning Code Subtitle 27 (Prince George's County)

- "Adequate roads will be available to serve development and all traffic it will generate, or an adopted and approved Master Plan shows those roads, which have their construction scheduled and one hundred percent (100%) funded in the current adopted County Capital Improvement Program, State Consolidated Transportation Program, or Federal Highway Administration Program; and the generated traffic will be accommodated by roads and intersections in the development's traffic study area, so that they will operate at adequate levels of service, as defined in the General Plan and the Guidelines for Analysis of Traffic Impact of Development Proposals."
- Minimum parking requirements are excessive and procedures for establishing reduced parking requirements in select zones are complicated.
- Limited allowance for mixed use residential/commercial buildings, increased residential density, or increased FARs, even near Metro stations.
- Driveway requirements for residential developments and parking lots limit the feasibility of access management/consolidation.

Prince George's County Planning Department The Maryland-National Capital Park and Planning Commission (M-NCPPC)

CENTRAL AVENUE-METRO BLUE LINE CORRIDOR (TOD) IMPLEMENTATION PROJECT

Transportation Review Guidelines (Prince George's County Planning Department)

 Draft guidelines, currently under Planning Department senior review, include a Transit-Oriented Development Checklist

Street Construction Review Checklist (DPW&T)

Midblock crossings are not permitted

Potential Policy Recommendations for TNFO

- Eliminate minimum parking requirements for development in TOD areas. Consider maximum parking ratios.
- Complete development of the TOD checklist to allow relaxed traffic impact requirements in TOD areas.
- Establish a mid-block crossing policy that discourages mid-block crossing in general, but provides specific criteria for appropriate use (e.g., distance from nearest signal, proximity of key destinations, traffic volume, etc.)
- Require subdivision layout to maximize connectivity and a complete network, rather than prioritize a
 discontinuous pattern.
- Establish maximum block lengths to ensure connectivity and improve access to transit.
- Establish policy for implementing CB-2 and identifying appropriate pedestrian and bicycle improvements for developer contribution.
 - Establish "rational nexus"
- · Require sidewalks on both sides of all new streets in TOD & urban areas
- Require dedication of all streets & trails (including buffers and sidewalks) as public ROW based on Complete Streets typology and network
- Design new streets following the Complete Streets typology and Complete Streets principles.
 - o Design streets from the outside-in, starting with desired land use and non-motorized modes
 - Sufficient buffer to support healthy trees is essential
 - Focus on intersections
 - Avoid private streets serving as parking lot access lanes.

Prince George's County Planning Department The Maryland-National Capital Park and Planning Commission (M-NCPPC)

CENTRAL AVENUE-METRO BLUE LINE CORRIDOR (TOD) IMPLEMENTATION PROJECT

Complete Streets Case Studies

Arlington, VA - Transportation Demand Management and Site Plan Review

- Arlington's Transportation Demand Management (TDM) Program for Site Plan Development coordinates site plan development with commuter and transit services.
- The 1990 TDM Policy outlines a matrix of voluntary TDM strategies based on the site's land-use and transportation categories. Matrix is used in site review and negotiation with the County to identify a final set of TDM strategies are written into the approved Site Plan Conditions and Transportation Management Plan (TMP).
- Developers must implement their TMP and prepare a TDM report before approval of the first Certificate
 of Occupancy and submit an updated TDM Report each year.

Portland, OR - Maximum Parking Requirements

- No minimum parking requirement for sites located less than 500 feet from a street with 20-minute peak hour transit service. The application requirement to request this exception is a map identifying the site and a copy of transit schedules for routes within 500 feet of the site.
- Vehicle parking substitutions allowed for tree preservation, bicycle parking, and transit-supportive plazas.
- Minimum carpool parking requirements for office, industrial, and institutional uses.

Portland Bureau of Transportation's "Green Transportation Hierarchy"

Maximum parking requirements for all uses .

San Francisco Metropolitan Transportation Commission Transportation for Livable Communities Program

- Housing Incentive Program (HIP) provides federal transportation funding to communities that successfully
 promote high-density housing and mixed-use developments in transit station areas.
- Links transportation funding and land use planning. Local governments must adopt a transit-supportive station area plan that achieves established housing densities within 0.5 miles of stations in order to receive funding.
- MTC anticipates that this will lead ultimately to the construction of an additional 42,000 units of transitoriented housing.
- Station area plans must also address pedestrian-friendly design standards, local circulation, and TODsupportive parking policies.

Prince George's County Planning Department The Maryland-National Capital Park and Planning Commission (M-NCPPC)

Appendix 3 Transportation Modeling Methodology and NCHRP 225 Results

MODELING DATA SOURCES

The principal tool used to develop travel forecasts for future scenarios was the Prince George's County travel demand model. This model uses the TransCAD software package and was originally a subset of the model used by Metropolitan Washington Council of Governments (MWCOG). Over the years, M-NCPPC's Transportation Planning Section (TPS) staff has greatly increased link density and data fidelity specific to Prince George's County. The County model is the most appropriate choice for a corridor-level study along Central Avenue.

The County's transportation modelers and project staff provided model outputs for three distinct years: 2000, 2010, and 2040. The 2000 version of the model is the County's most recent, calibrated, and validated model, and uses data from the US Census, American Community Survey, MWCOG, and other sources. Ideally, this would be the model used throughout the project area to represent existing conditions. However, the 2000 model's transportation network is missing some important transportation links that are part of the 2011 existing transportation system. Most notable among these differences is the addition of two Blue Line Metro stations at Morgan Boulevard and Largo Town Center, and a fully directional interchange at 1-495 and Arena Drive. Not surprisingly, a comparison between the 2000 model results and 2011 traffic counts revealed these differences are particularly substantial on Central Avenue east of Morgan Boulevard and in the Largo Town Center.

The 2010 version of the model mitigated these concerns, as the transportation network more accurately represents actual existing conditions. The 2010 model includes the current version of the Metro transit network, as well as other relevant interchanges and roadways improvements constructed since 2000. The County is currently working to complete the validation for the year 2010 model, and is approximately halfway through the process. The model has yet to be validated for the transit network and Central Avenue, but preliminary results indicated that the model accurately depicts travel patterns in the study area.

The County has a future-year model that includes the demographic information from the adopted and approved master and sector plans in Prince George's County. The model's forecast year is not specified since the end dates of all the master and sector plans are not the same, but 2040 is the most common horizon year of the future plans. The future forecast year assumes the full build-out of all of the master plans from within the County. The transportation network in the model includes all identified master plan sector plan improvements within Prince George's County, and 2040 fiscally-constrained projects from MWCOG's long-range transportation plan for areas outside of the County. Community Planning Division staff provided land-use inputs to Prince George's County travel demand modeling staff, which then disaggregated the data and applied it to their model, it was assumed that it represents conditions in the year 2040. This model was used to evaluate No-Build conditions and as the starting point for the evaluation of Build alternatives.

Modeling data for 2007 and 2030 was obtained from MWCOG. While this data was not specifically used to develop travel-demand forecasting for future scenarios, including the No-Build alternative, the data provided an additional check

and comparison for the Prince George's County's model data. The 2007 model was especially useful in comparison to the County's in-process 2010 model, as well as recent traffic counts.

For the Central Avenue project, AECOM completed a market-based assessment of likely growth in households and employment through the year 2033. Setting the future analysis year to 2035 ensures that any land-use changes and forecasted development from the 2033 AECOM land use/employment forecast data is incorporated into the analysis of the Build Alternatives.

Modeling Approach

The modeling approach was designed with the goal to assess future transportation conditions within the study area and to develop a preferred transportation concept for accommodating anticipated growth.

County-wide models were used to develop the No-Build forecast. As the year 2000 model was the calibrated and validated model that the County currently uses for existing conditions work, the goal was to use this model for the entire study area. Because the year 2000 model does not account for more recent additions to the transportation network, the model produced results for areas east of Morgan Boulevard that were incongruent with existing traffic count data from 2011.

The year 2000 model was used as the baseline model only for areas west of Morgan Boulevard, and the year 2010 model was used for areas east of Morgan Boulevard and Largo Town Center. The 2040 model was used as the future model. The model output data, in conjunction with existing traffic counts for the study area, were analyzed using (National Cooperative Highway Research Program) NCHRP 255 post-processing procedures to complete the forecast for the No-Build alternative. The year 2040 volume data was adjusted downward to represent year 2035 volumes and entered into the Synchro traffic model developed for the project. The final analysis volumes were developed by balancing turning movements and segment volumes in Synchro.

The Build Alternatives scenarios were developed through coordination with Park and Planning staff. The three scenarios used data from the Economic/Market Analysis for the Central Avenue corridor, in conjunction with the volumes prepared for the No-Build alternative. The market study data included projected future development tied to appropriate parcels, with supporting information on supportable office space, supportable housing units, and retail,

Forecasting of future volumes and turning movements for the three Build Alternatives began by post-processing the No-Build results. Post-processing involves the refinement of modeling outputs based on factors that may not be contained in the model – such as additions to the network, effect of mixed-use development, and non-motorized mode splits. Postprocessing relies on the experience the modeling, an understanding of the land use and transportation network in the study area, and on engineering judgment

The methodology for post-processing the model results took into account No-Build trip generation, market data, potential for mode split changes, travel demand management strategies, internal capture effects, non-auto infrastructure improvements, and traffic diversion/route choice changes created by potential adoption of new transportation network

changes developed as part of the Complete Streets strategy recommendations. These parameters incorporate the effects of mixed-use development, non-auto infrastructure, and travel demand management strategies not captured explicitly within the model. Alternatives also considered the potential for dedicated transitways within the study area.

The Build Alternatives were evaluated with Synchro to assess year 2035 operations for all alternatives, and comparisons were made to the No-Build scenario. Based on Prince George's County's methodology, LOS E or better will be the standard performance metric at all signalized intersections. Our analysis approach assessed the impacts of proposed improvements that used a range of evaluation criteria that captures safety, operations, and non-automobile travel.

	2035 Volume / 2011 Existing Volume	32%	8%				30%				52%				32%				17%	-14%				346				53%				14%		
	2035 Final Analysis Volume	4648	552	32.	351	168	2793	16	2559	143	948	65	875	00	356	53	277	26	3066	222	56	EST	12	2823	86	2656	69	1231	586	477	167	792	42	524
	040 Analysis Volume	4885	560	33	357	170	1252	95	2682	150	1024	70	345	9	374	SS	291	28	527	214	25	148	12	2871	100	2701	70	1320	629	512	179	813	43	640
NUTRY 435 METROD SERCED Ratio Difference Average	Growth Factor (From 2040 Analysis Ex. Volume) Volume	151	1.10	1.10	1.10	110	1.36	1.36	1.36	1.36	1.75	1.75	1.75	175	1,38	1.38	1.38	1.38	17E	0.64	0.64	0.64	0.64	111	111	111	1.11	1.65	1.65	1.65	1.65	1.17	117	1.17
	Average ((Ratio + Diff.)/2)	1185	560	33	357	170	2927	35	2682	150	1024	70	545	đ	374	55	167	28	1991	165	42	114	đ	2871	100	2701	70	1320	629	512	179	813	43	640
	Difference Method (Ex. + Future - Base)	5538	582	34	371	177	2988	25	2738	153	182	67	116	80	425	63	331	IE	5641	116	29	18	ig.	2857	66	2688	69	1486	708	576	202	825	44	650
	Ratio Method (Existing* { Future/Base}	SDB4	539	32	343	164	2865	66	2625	147	1061	13	980	đi	322	48	251	.24	1295	214	54	148	12	2885	100	2714	10	1154	550	448	157	800	43	630
	2011 Base Model: 1 2011 Existing Volume	129	2.50	2.50	2,50	2.50	117	1.17	117	117	0.84	0.84	0.84	0.84	2.97	2.97	76.2	167	1.20	3.24	3.24	3.24	3.24	0:00	06'0	06'0	06.0	1.94	1.94	1.94	1.94	1.23	1.23	1.23
		6556	1347	52	858	409	3358	109	3077	172	568	61	826	00	956	142	744	LL.	6528	169	175	479	38	2609	16	2455	63	2241	1067	869	SOE	1987	ß	111
	2011 Adjusted Base Model Volumes	-3089	1275	75	813	388	2520	82	2309	129	493	34	455	4	108	911	623	65	5587	832	210	576	45	2344	81	2206	57	1557	742	604	212	854	46	672
AM Feak	Base to 2011 Future Model Adjusted Base 2040 Future Growth Model Model Link Factor Volumes Volumes	1.1%	0.2%				13%				4.1%				0.7%				0.6%	-0.5%				0.4%				1.8%				0.6%		
	2000 Base Model Link Volume	4533	1248				2202				341				202				0675	885				2244				1298				503		
2011 2000 2040	% Approach Volume		100.00%	5,88%	63.73%	30,39%	100.00%	3.26%	91.63%	5,12%	100.00%	6.84%	92.31%	0.85%	100,00%	14.81%	W8L11	7,41%		3500.001	25.29%	69.26%	5.45%	100.00%	3.47%	94.10%	2,43%	100.00%	47.63%	38.78%	13,59%	100.00%	5,35%	78.76%
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	3515	510	30	325	155	2150	20	0/61	OLL	585	40	540.	ŝ	270	40	210	20	EPES	257	65	178	34	2592	90	2439	63	802	382	TIE	109	692	37	545
Existin Base Future	2 Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	MBI	WBT	WBR	MB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBR	Total	SB.Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT
	Intersection Name					avi		əyı	noș	;/əi	nua	٨A	en	uag	,								peo			рръ	i/əi	nuə	٨¥	611	uag			

2035 Final 2035 Volume /	Z011 Existing	362	94-				8%							346					460	21%				-6%				-10%				13%		
2035 Final	Volume	3662	15	17	Ø	76	2773	0	2751	22	0	0	0 0	792	28	764	0	1000	597.0	710	348	130	232	ELET.	88	2096	195	313	131	135	47	781	-02	673
	2040 Analysis Volume	3714	96	21	0	75	2815	0	2793	22	1			304	28	775	0	100	0975	736	360	135	240	2345	88	2066	192	305	128	132	45	108	72	689
Average Growth	Ex. Volume) Volume	TH1	0.92	0.92		0.92	01.1		1.10	OFT				1.09	1.09	1.09		-	100	1.25	1.25	1.25	1.25	0.92	0.92	26.0	0.92	0.79	67.0	0.79	0.79	1.16	1.16	1.16
VCHRP 255 M	((Ratio + Diff.)/2)	3823	8	17		75	2815		2793	22				804	28	275			2015	736	360	135	240	2345	88	2066	192	275	115	911	41	108	72	689
	(tx. + Future - Base)	3832	54	21	0	73	2803	0	2782	22				819	56	064	0	1000	2108	756	370	139	247	2334	87	2056	191	245	103	106	37	.833	75	727
70	Future/Base)	3814	86	22		76	2826		2804	22				789	28	761		1000	SIG	715	350	131	234	2356	88	2075	193	305	128	132	45	768	69	661
	Volume	507	1.59	1.59		1.59	16.0		16.0	0.91				1.59	1.59	1.59		-	131	1.32	1.32	1.32	1,32	III	111	111	III	2.36	2.36	2.36	2.36	1.82	1.82	1 83
2040 Future	Volume	3985	155		0	121	2577	0	2557	20	0			1254	44	1210	0	A data	7605	945	463	174	60E	2625	98	2312	215	720	301	312	107	1402	126	1001
2011 djusted Base	Volumes		165	37	0	129	2344	0	2325	18	10//NG#			1172	141	1131	0	and the second	2084	ш	380	143	254	2834	306	2496	232	\$24	345	356	123	1259	113	1084
AM Peak Base to 2011 Future Model Adjusted Base 2040 Future	Factor	53%	-0.2%				0.4%				10//ND#			0.256					(CDT)	0.8%				-0.2%				-0.4%				0.4%		
	Wodel Link Volume	3565	169				2255				0			1141				- and	theose	ELL				5913-				863				1205		
2011 2000 2040	% Approach Volume		100.00%	22.12%	0.00%	77.88%	100.00%	0,00%	99.22%	0.78%	0,00%			100,00%	3.53%	96.47%	0.00%			100.00%	48.98%	18.37%	32.65%	100.00%	3.74%	88.08%	8.18%	100.00%	41.83%	43.27%	14,90%	100.00%	8.99%	86.09%
in the second	Volumes	3431	104	23	0	81	2570	0	2550	20	0	0	0 0	737	26	111	0	1000	41/0	588	288	108	767	2543	95	2240	208	349	145	151	52	690	62	765
Existin Bas Furum	Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	MBL	WBT	WBR	NB Approach	NBL	NBT	EB Approach	EBL	EBT	EBR		rotal	SB Approach	SBL	SBT	SBR	WB Approach	WBI	VBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT
-	Name					ə		٨pu	15/4			je.	oneo									ne.	1 4		s/p	eοξ	C)III		nua	WA	le :		0	

187

	2035 Volume / 2011 Existing Volume	-4%	41%				-10%				-1%				%6-				28%	-16%				39%				46%						
	2035 Final Analysis Volume	6651	382	165	189	128	2215	150	1974	92	847	363	209	275	995	11	262	126	1896	355	Ħ	344	D	199	-06	0	108	-1343-	0	1243	66	0	0	0
	2040 Analysis Volume	3496	511	175	200	136	2165	146	1929	6	846	363	209	274	515	75	776	124	1987	340	10	330	0	210	96	0	115	1431	0	1325	106			
Nutrin 20 Method services Difference Average	Growth Factor (From 2040 Analysis Ex. Volume) Volume	26:0	1.49	1,49	1.49	1,49	0.88	0,88	0,88	0.88	66'0	66.0	66.0	66.0	0.87	0.87	0.87	0.87	1	0,80	0.80	080		1.47	1.47		1.47	1.56		1.56	1.56			
	Average ((Ratio + Diff.)/2)	1361	511	175	200	136	2165	146	1929	06	846	363	209	274	948	73	755	120	2256	340	10	330		210	96		115	1431		1325	106			
	Difference Method (Ex. + Future - Base)	4322	520	178	204	138	2152	145	1917	68	845	362	209	274	921	12	733	111	2269	318	10	308	0	179	18	0	98	1556	0	1441	115			
	Ratio Method (Existing * { Future/Base)	4401	502	172	197	133	2178	147	1940	06	847	363	209	275	975	75	776	124	2044	363	п	352		162	110		132	1306		1210	16			
	2011 Base Model: 1 2011 Existing Volume	123	111	111	1.11	111	1.09	109	1.09	1.09	1.23	1.23	1.23	1.23	1.47	1.47	2.47	1.47	3,40	1.74	1.74	1.74		0.37	0.37		0.37	1.64		1.64	1.64			
	2040 Future Model Link Volume	5417	558	191	219	148	0862	191	2120	66	1042	447	257	338	1437	TTL	1144	182	1982	632	91	613	0	88	40	0	64	2146	0	1987	159	0		
	2011 Adjusted Base Model Volumes	ans	380	130	149	101	2685	181	2392	III	1051	450	260	THE	1605	124	1278	203		737	23	714	0	S	24	0	29	1508	0	1396	112	10/NG#		
AM Peak	Base to 2011 Euture Model Adjusted Base Growth Model Factor Volumes	-0.7%	2.0%				-0.4%				95070				%E'0-				69%	-0.5%				3.2%				1.7%				10//MO#		
	2000 Base Model Link Volume	15837	SIB				2801				1054				1669				2082	111				6 E				1266				0		
2011 2000 2040	% Approach Volume		100.00%	34.21%	39.18%	26.61%	100.00%	6,76%	%60.68	4,15%	100.00%	42.86%	24.71%	32.44%	100,00%	MILL'	79.61%	12.5/%		100.00%	3.07%	ME6:96	0.00%	100.00%	45.45%	0.00%	54.55%	100.00%	960070	92.59%	7,41%	0.00%		
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	2425	342	TIE	134	16	2457	166	2189	102	854	366	211	111	1089	84	198.	138	1484	423	13	410	0	143	65	0	78	918	0	850	68	0	0	0
Existin Bass Future	2 Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	MBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBK	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT
	Intersection. Name			peo	99 s			/p^	9 UI	ega		/ən	uən	VI	6171	JəD									nqii	m/1	peo		osi	opy				

	2035 Volume / 2011 Existing Volume	10%	18%				68%				-15%	2			-24%				7162	ALL A				66%				46%				172%			
	2035 Final Analysis Volume	1282	477	41	432	4	329	235	L	87	455	6	375	11	17	2	m }	16	13601	VLS	E E	530	32	116	99	m	46	522	17	165	13	123	8	9	36
	2040 Analysis Volume	1207	492	£1	446	4	356	254	7	95	439	ġ	362	68	20	2	m)	15	LEVE	620	14	581	35	125	72	4	20	556	19	524	14	166	103	7	30
NCHRP 255 Method selected Ratio Difference Average	Growth Factor (From 2040 Analysis Ex. Volume) Volume	1,09	1.22	1.22	1.22	1.22	1.82	1.82	1,82	1.82	0.82	0.82	0.82	0.82	0.72	0.72	0.72	0.72	200	2.00	2.04	2.04	2,04	2.79	2.79	2.79	2.79	1.55	1.55	1.55	1.55	3.69	3.69	3.69	1.05
NCHRP 25 M	Average ((Ratio + Diff.)/2)	1269	492	43	446	4	356	254	1	- 95	439	9	362	68	20	2	m }	5	1002	520	14	581	35	196	112	ø	78	556	19	524	14	166	103	1	10
	Difference Method (Ex. + Future - Base)	1282	510	44	462	4	313	£22	9	83	427	6	352	99	0	0	0	0	VEH:	COL	16	633	38	266	152	00	106	509	20	570	15	231	144	10	10
	Ratio Method (Existing * { Future/Base)	1256	474	41	430	47	400	286	60	106	451	5	372	70	20	2	m ;	5	1017	1201	E	529	32	125	72	4	20	202	17	478	II	101	8	4	
	2011 Base Model: 1 2011 Existing Volume	121	1.50	1.50	1.50	1.50	0.57	0.57	0.57	0,57	1.29	1.29	1.29	1.29	3.55	3.55	3,55	3.55	NC F	1 42	143	1.43	1.43	3,53	3.53	3.53	3.53	1.66	1,66	1.66	1,66	3.33	3.33	3,33	
		1596	713	62	646	'n	229	164	5	61	583	12	480	16	L	ō	97	R	CORE	010	19	754	45	- 545	253	EI	171	840	28	161	21	336	209	15	1
	2011 djusted Base Model Volumes	1509	607	8	550	5	112	80	2	30	069	14	569	107	66	11	4	74	HOLE	TELT	10	407	24	247	141	7	66	593	20	558	IS	150	6	7	
AM Peak	Base to 2011 Future Model Adjusted Base 2040 Future Growth Model Model Link Factor Volumes Volume	97%	0.6%				5.9%				-0.5%				-0.9%				3.20	1 0%.	antici			3.9%				17%				8.1%			
	2000 Base 1 Model Link Volume	1476	567				68				TEL				110				- UVIO	004	-			ELE				499				61			
2011 2000 2040	% Approach Volume		100.00%	8,66%	36506	0.74%	100.00%	%EFTL	2,04%	26.53%	100.00%	2,06%	82.40%	15.54%	100.00%	10.71%	14.29%	75.00%		100 ONE	2.27%	92.23%	5.50%	100.00%	57.14%	2.85%	40,00%	100.00%	3.35%	94°T3%	2.51%	100,00%	62.22%	4.44%	
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	1162	404	35	366	æ	196	140	4	25	534	11	440	83	28	÷	4	21	105	300	1	285	17	02	40	2	28	358	12	15E	6	45	28	2	
Existin Bas Futur	2 Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	MBL	W81	WBR	MB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBR	Total	CB Annenach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	
	Intersection Name	1						MO	IIIW			(i)H											p/		olail	əðp	אופ		gu	eBJ0	w				

594 717 0.96 717 0.96 717 0.96 717 0.96 717 0.96 717 0.96 717 0.96 717 0.96 717 0.96 710 <t< th=""><th>717 0.98 733 751 732 363 0.98 313 370 371 364 0.98 362 360 361 10 0 162 362 361</th><th>717 0.98 733 171 732 120 363 0.98 371 370 371 120 354 0.98 352 360 361 120 0 0 0 352 360 361 120</th><th>717 0.98 733 731 732 363 0.98 371 370 371 363 0.98 371 370 371 354 0.98 362 360 361 0 0 0.98 362 360 361 0 0 0 0 0 0 0</th></t<>	717 0.98 733 751 732 363 0.98 313 370 371 364 0.98 362 360 361 10 0 162 362 361	717 0.98 733 171 732 120 363 0.98 371 370 371 120 354 0.98 352 360 361 120 0 0 0 352 360 361 120	717 0.98 733 731 732 363 0.98 371 370 371 363 0.98 371 370 371 354 0.98 362 360 361 0 0 0.98 362 360 361 0 0 0 0 0 0 0
717 0.98 733 731 363 0.98 715 89.0 36.0 364 0.98 36.2 36.0 36.0 0 0 0 0 0 0	717 0.98 733 731 363 0.946 374 370 354 0.968 352 360 0 0 0 0	717 0.98 733 731 363 0.96 371 370 354 0.96 371 370 35 0.94 352 360 0 0 9 0	717 0.98 731 717 363 0.94 374 370 364 0.94 362 360 0 365 365 360 0 0 0 0 0 0 0 0
363 0.96 371 370 354 0.98 352 360 0 0 0 0 0 352 360	363 0.998 371 370 354 0.998 352 360 0 0 0	363 0.96 371 370 354 0.98 371 370 0 350 0.98 352 360 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
354 0,98 362 360 361. 0 0	354 0,98 362 360 361. 0 0	354 0,98 362 360 361. 0 0	354 0,98 362 360 361. 0 0 0 0
0	0	0	0

	2035 Final Analysis Volume	2105	319	307	176	Etwaz.	443	2047	353	199	168	123	370	1658	145	1309	214	5493	1105	952	0	348	1012	813	2094	0	0	0	B	R	1482	0	OVIE
	2040 Analysis Volume	1219	760	342	395	2672	436	2012	347	683	174	127	384	1754	152	1376	22	5005	1098	752		346	2482	261	2047	0			ĺ		1468	0	ESIT
NCHRP 255 Method selected Ratio Difference Average	Growth Factor (From Ex. Volume)	215	255	3.66	356	160	160	16.0	160	125	126	1.26	1.26	140	140	140	140	F	F	Ţ		F	H.	Ŧ	R						7		F
NCHRP 255 M	Average ((Ratio + Diff.)/2)	1009		195	-189	2795	436	2012	347	889	174	121	384	1754	152	1376	272	53/0.	1058	151		346	2842	252	2047						1468		6511
	Difference Method (54. + Future - Base)	1502	354	342	1961	2789	435	2007	347	628	160	117	352	1621	141	1273	208	5303	1104	756	0	348	2813	181	2026	0					1493	0	6/11
	P	5112	For the	899	383	2802	437	2017	348	742	189	138	415	1886	164	1480	242	5347	1092	748		345	1182	803	2067						1442		1139
	2011 Base Model: 2011 Existing Volume	0.82	92.0	0.38	0.38	1.05	1.05	1.05	1.05	0.43	0.43	0.43	0.43	0.58	0.58	0.58	0.58	0.92	0.73	D,73		E2'0	1.15	1.15	1.16						0,53		0.53
	2040 Future Model Link Volume	NICS.	DAL	12	147	2936	458	2113	365	212	18	- 65	177	1095	53	859	5	4905	795	544	0	151	3343	935	2408	0	0				191	Ģ	603
	011 Adjusted Base Model Volumes	5157	81 ¥	1 13	30.	3220	502	8152	400	232	59	43	130	729	63	572	88		826	565	0	197	3750	1049	10/2	0	iD//vida				821	a	648
AM Peak	Base to Future 2011 Adjusted 2040 Future Model Growth Base Model Model Unix Fatter Volumes Volume	0.034	ALC: CT			-0.3%				13%				1.8%				ALO.	113%				家を中				i0//vid#				22.0		
	* * ··	4755	Nor I			3230				677				9710				SALA	128				3764				0				803		
2011 20102 0402	% Approach Volume	100.001	SUPPLIER DE	38.33%	21.94%	100,00%	15.59%	71.98%	12.43%	100.00%	25.41%	18,60%	55.99%	100.00%	8.69%	78.49%	12 83%		100.00%	68.46%	0.00%	31.51%	TODIOUS	27.98%	72.02%	5000	150010				100.00%	80070	316.81
Existing Count Year Base Model Year Future Model Year	ting as	253	143	138	R	3073	479	2222	387	543	SEL	101	304	1255	109	985	191	5905	1135	111	0	358	3220	901	2319	0	0	0	D	0	1550	0	3224
Exist Ba Futu	Movement	TOL:	So Approvent	185	SBR	WE Approach	WBC	WBT	WBR	NB Approach	TEN	NBT	NBR	EB Approach	ERL	EBT	EBR	Tota	SB Approach	RE	587	SBR	WB Approach	WBK	WBT	WBR	NB Approach	NBL	NBT	NBN	E8 Approach	EBL	EBT
	Intersection Name	p	eo y	16%	saul	448	/pe	ъя	шо	adu	нен	/11	104/	AI	ex)s	103							85 9	56-	l/ar	104	VA I	em	ua;)			

	2035 Final Analysis Volume	2020	-			3245	0	1292	575	第	662	D	149	1747	555	1192	Ø	1977	0	Q	0	9	348	115	0	33	1773	Ð	1059	714	NMR .	25	117	ACC
	2040 Analysis 2035 Final Volume Analysis Volur	3876				5171	0	2609	195	696	005	0,	650	1756	558	1198	0	125					162	326	0	36	1851	0	1105	146	352	26	119	DUL
NCHRP 255 Method selected Ratio Difference Average	Growth Factor (From Eu Volume)	4				H		I.	I	7	Ħ		1	T	7	Τ.		-	r				F	7		2	F		1	Ŧ	1	-	1	•
NCHRP 255 M	Average ((Ratio + Diff.)/2)	5774				3171		26092	195	5	300		650	1756	555	1198		2311	ł				16	- 86		28	1881		1105	746	352	26	511	
	Difference Method (Ex. + Future - Base)	5829				3164	0	2604	560	944	298	0	646	1735	551	1184	0	2085					16	10	0	20	1643	0	185	299	342	5	115	
	Ratio Method (Existing * Future/Base)	5720				3177		2614	205	955	ZUE		654	1111	565	1213		in the	ł				162	126		36	6502		1230	830	362	27	721	
	2011 Base Model: 2011 Eústing Volume	520				1.03	-	1.03	1.03	0.52	0.52		0.52	0.43	0,43	0,43		0.39					0,13	0.13		0,13	0,37		0.37	0.37	0.58	0,58	0.58	
	2040 Future Model Link Volume	4525	0			3268	0	2689.	579	493	156	0	337	764	243	175	Û.	1985	0				21	16	0	'n	758	0	453	305	DIZ	15	11	
	011 Adjusted Base Model Volumes		ID//NC#			5713	0	3055	657	480	152	0	379	732	233	500	0		BIV/01				10	20	0	4	515	0	308	208	182	B	19	
AM Peak	Base to Future 2011 Adjusted 2040 Future Model Growth Base Model Link Factor Volumes Volume	N.C.D.	BUN/NO#			9.4%				2134				-0.2%				140	10//IC#				3.72				17%				0.5%			
	2010 Base Model Link Volume	1933	D			3728				480				731				1000	0				07				507				181			
2011 2000 20402	% Approach Volume		0.00%			100.00%	0.00%	82 29%	17.71%	100.00%	31.58%	1000	68.42%	100.00%	31.77%	68.23%	90006		0.00%				300.00E	17.50%	1000%	22.50%	100.00%	1500.0	59.71%	40.29%	\$00'00I	732%	33.76%	
Evisting Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	6243	0	0 1		3609	0	01/02	629	150	訪	a	123	1703	175	1162	Ð	APPER	0	0	a	0	80	3	0	18	1400	0	836	264	314	23	305	
Elois B.	Movement	TOLE	SB Approach	R I	SBT	WB Approach	WBL	WBT	WBR	NB.Approach	NBL	NBT	NBH	EB Approach	EBL	EBT	EBR	100	SB Approach	SBL	SBT	SBR	W/B Approach	NBL	W/BT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	581	EBT	
	Intersection					81	56	-1/ə	nut	W.Y	le 1	093	2						13.	LON	I) a.	DIN DIN	i Di	nem net	trui to c	'S Lien	A /#/	Driv BH 1	9 85 UR	5/8 	N	ş٨ı	101	•

	2035 Final Analysis Volume	TOT	a c		0	1269	92	1111	0	SIL	8	a 9	1017	0	766	751		10.58	0	155	312	1901	17	573	104	5	R •			0 0	3	3191	211	1982	383	553	355	238	42	162	607	62	916	515	329
	2040 Analysis Volume	2611				1404	101	1302	0	IOI	92	• ;	1107	0	834	273		Least	R O	168	339	1109	78	85	104	47	8					1215	18 C	102	405	- 670	374	252	45	515	154	35	1074	267	362
Ratio Difference Average	Growth Factor (From Ex. Volume)	-				2	14	7		0	0	c			2	7		-	•	9	9	Ŧ	۳,	17	-	1	1					12		1 01		2	2	2		v	-	1	m	m	m
	Average ((Ratio + Diff.)/2)	đ				1404	TOL	1302		100	26	• •	1011		834	ELZ		a/ 30	in	571	1148	1287	#)	630	101	5	F					161	too too	134	739	116	245	365	8 5	315	434	99	1374	115	464
	Difference Method (Ex. + Future - Base)	1997				1319	55	1224	0	25	E	0	1047	0	789	258	1440	A/Sic	0	168	339	1109	87 78	543	104	5	<u>ع</u> د					3388	10	402	405	670	374	252	45	285	392	59	1074	267	362
	Ratio Method (Existing* (Future/Base)	5752				1485	108	1381		104	61	Ŧ	1167	-	678	288	and and	1000	0007	573	1957	1466	18	111	104	5	\$					5877	127	1066	1073	1/21	601	477	85	346	475	72	1674	884	565
	2011 Base Model: 2011 Existing Volume	0.92				0.80	0.80	0.80		107	1.07		1.07	-	670	6/10		0.0	6000	60.0	60'0	0.40	0.40	0.40	0.01	10.0	10/0					0.34	0.16	910	0,16	0,25	0,25	0.25	0.25	55.0	0,55	0.55	0.49	0,49	0.49
		1222				1197	99	1111	0	ш	84	0	477	0	869	677		125	0	85	172	260	S)	289	1	0	-	. 0				2002	3/3	173	175	322	180	121	12	190	261	40	816	431	275
	011 Adjusted Base Model Volumes	HERITA AND	ID/AIO#			105	*	465	0	218	166	Q (24	0	350	114		10	50	90	16	349	an lig	171	F	0	H 6	1DI/VIG#				臣	R 4	-	45	118	35	3	an of	116	159	77	34	130	283
AM Peak	Base to Future 2011 Adjusted 2040 Future Model Growth Base Model Link Factor Volumes Volume	3.7%	ST/AID#			5.0%				4.7%			365					CO 35	619:06			2.43%			2000			10/AIG#				A.05-	11.15			6.3%			144.6	-			8.7%		
	2010 Base Model Link Volume	1117	2			477				222			1440	ŧ				2000 140	07			341			I			0				110	8			III			con	6			226		
2011 2010 2040	% Approach Volume	0.005	summ.			100.00%	7.22%	92.78%	9000	100.00%	75.98%	\$000	100 005	1000	75.34%	24.66%		100 005	0.00%	33.21%	66.79%	100.00%	255%	48.505	100.00%	4.81%	95.19%	2000					6 6.6%	46.51%	46.85%	100.00%	55.79%	37.55%	0.0076	38.72%	53.21%	8.07%	100.00%	57.78%	33.73%
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	1411				623	45	578	0	204	155	a 9	Cet Cet	0	440	344		124	0	16	183	868	2	425	đ	s	56 0		0		5	2002	100	273	275	466	260	175	31	211	290	44	SOR	566	170
Exist Ba Futu	Movement	Total Strength	20 Mprivaci	de la	SBR	WB Approach	WBU	WBT	WBR	NB.Approach	NBL	181	TEA Anoroch	ER	EBT	EBR		CD Amountable	185	SBT	SBR	WB Approach	WBL	WEB	NB Approach	NBL	NBT	EB Approach	183	EBT	CUN	TCL	spectador.	197	SBR	WB Approach	WBI	TBW	WBR	NBC	NBT	NBR	EB Approach	1	183
	Intersection					ew	sia	dda	45/	anju	IQ II	uan	4				1			avi	10		nt.	s Ai	JeH.	peo	a bi	ojste	7			13					рна	lizit	a1/1	uə,	A				

	2035 Final Analysis Volume	181E	56	16	0	83	1395	Ţ	1357	36	0	0	0	0	2288	76	2196	0	4648	867	470	250	146	1498	108	1145	244	316	97	169	50	1967	87	1782
	2040 Analysis Volume	38.75	94	15	0	79	1445	1	1406	38	1	1			2285	92	2193	0	4624	831	509	270	158	1522	110	1164	248	319	98	170	50	1952	86	1768
NCHRP 255 Method selected Ratio Difference Average	Growth Factor (From Ex. Volume)	OFT	0.67	0.67		0.67	1.25	125	1.25	1.25					66.0	66:0	66.0		118	1.78	1.78	1.78	1.78	1.10	1.10	1.10	1.10	1.05	1.05	1.05	105	96.0	96.0	0.96
NCHRP 255 M	Average ((Ratio + Diff.)/2)	ELPE	82	В		89	1445	1	1405	38					2285	-92	2193		2032	937	509	270	158	1522	110	1164	248	319	86	170	50	1952	86	1768
	Difference Method (Ex. + Future - Base)	3905	69	п	0	58	1459	1	1419	38					2287	92	2195	0	5107	1044	567	TOE	176	1545	112	1182	252	325	100	174	52	1958	85	1773
	Ratio Method (Existing * (Future/Base)	EE6E	94	15		52	1432	1	E6E1	37					2284	26	1612		4956	831	451	240	140	1498	108	1146	244	312	96	167	49	1947	86	1763
	2011 Base Model: 2011 Existing Volume	Z6:0	1.89	1.89		1.89	110	1.10	1.10	1.10					0.82	0.82	0.82		122	1.70	1.70	1.70	1.70	1.41	1.41	1.41	1.41	2.50	2.50	2.50	2.50	0.88	0.88	0.88
	2040 Future Model Link Volume	3520	178	29	0	149	1569	Ţ	1527	41	0				1873	76	197	0	6022	1413	767	408	239	2118	153	1619	346	781	240	418	124	1710	75	1549
	2011 Adjusted Base Model Volumes		231	8	0	193	1262	Ţ	1228	33	iD///ID#				1889	76	1813	0	5404	896	486	258	151	1958	141	1497	319	759	233	406	120	1791	-62	1623
PM Peak	Base to Future Model Growth Factor	0.2%	-0.7%				%6'0				10//ND#				%0.0				0.4%	2.5%				0.3%				0.1%				-0.2%		
	2000 Base Model Link Volume	3292	251				1146				0				1895				5169	200				1897				750				1822		
2011 2000 2040	% Approach Volume		100,00%	16.39%	0.00%	83.61%	100.00%	%60'0	97.31%	2,60%	0.00%				100.00%	4.04%	95.96%	%00'0		100.00%	54.27%	28.84%	16.89%	100.00%	7.22%	76.45%	16.32%	100.00%	30.69%	53.47%	15.84%	100.00%	4.41%	%85'06
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	5577	122	20	0	102	1152	1	1121	30	0	0	0	0	2303	55	2210	0	4254	527	286	152	68	1385	100	1059	226	303	55	162	48	2039	90	1847
Existi Bas Futur	Movement	Total	SB Approach	SBL	587	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBR	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	E81
	Intersection Name							٨pu	/כוו	əņu	ent	/ Ie	ųtų									aue	7 Å F			eoy	1111		nue	WV	ler		5	

Ratio Difference Average	Average Growth 2040 ((Ratio + Factor (From Analysis Diff.)/2) Ex. Volume Volume	CNES 7071 6985	899 1.43	297 1.43	456 1.43	145 143	1660 1.01 1660	101 652	1275 1.01 1.275	126 1.01	834 L04	231 104	245 1.04 245	1.04	1919 0.87 1919	194 0.87	1	149 0.87	3461 1.45 2252	1325 1.46 1325	72 1.46	1253 1.46 1.253			119 1.72			756 1.09		601 L09	60T 68			
	Difference Method Av (Ex.+ Future - ((F Base) Di	5375	626	307	471	151	1660	259	1275	126	843	233	249		1915			149	2574 3	1412	76	1335	0			0		j	0		90			
	Ratio Method (Existing * Future/Base)	-5363	869	287	441	141	1660	259	1275	126	825	228	244	353	1923	194	1579	149	2348	1238	19	1171		193	133		60	741		654	87			
	2011 Base Model: 2011 Existing Volume	113	1.25	1.25	1.25	1.25	86.0	0.98	0.98	0.98	1.68	1.68	1.68	1.68	1.03	1.03	1.03	1.03	135	1.53	1.53	1.53		0.56	0.56		0.56	1.57		1.57	1.57			
	2040 Future Model Link Volume	6078	1087	359	155	177	1632	255	1253	124	1384	383	409	592	1975	200.	1622	153	3163	1889	102	1787	0	107	74	0	33	1167	0	1030	137	0		
	2011 Adjusted Base Model Volumes	9009	785	259	398	128	1617	253	1241	123	1340	371	396	573	2265	229	1860	176		1384	75	1310	0	-95	38	0	17	1088	0	960	128	i0//I0#		
PM Peak	Base to Future Model Growth Factor	9.0.0	1.6%				960'0				0.1%				-0.4%				TON	1.5%				4.9%				0.3%				10//NIQ#		
	2000 Base Model Link Volume	5619	670				1611				1323				2375				2287	1193				36				1058				0		
2011 2000 2040	% Approach Volume		100,00%	33.01%	50.72%	16.27%	100.00%	15.62%	76.78%	7.60%	100.00%	27.66%	29.54%	42.80%	100.00%	10.11%	82.13%	7.76%	Ì	100.00%	5.40%	34.60%	80000	100.00%	%00.69	0.00%	31.00%	100.00%	0.00%	88.28%	11.72%	0.00%		
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	9175	627	207	318	102	1645	257	1263	125	661	221	- 9EZ	342	2205	223	1811	1/1	1698	202	49	858	0	100	69	0	31	169	0	610	81	0	D	
Exist Ba Futu	Movement	Total	SB Approach	SBL	587	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBR	Total	SB Approach	SBL	581	SBR	WB Approach	MBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	COT

lod selected Ratio Difference Average	Growth 2040 Factor (From Analysis Ex. Volume) Volume	200 1475	L30 534	1.30 76	130 549	1.30 9									0.98 26	0,98 4		0.98 19	171 1257	123 501	123 22	1.23 448	123 31	3.98 75	3.98 49		3.98 27	1.55 659	1.55 28	1.55 574	1.55 57	0.60 21	0.60 8	
NUTRY 235 WEINOU SEIECTED Ratio Difference Average	Average Gr ((Ratio + Facto Diff.)/2) Ex. V	1530	634		549									108 (1) <u>e</u> l	1528	105	22	448	31	135	87		48	659	28	574	25	16 (6 6	
6	Difference Method (Ex. + Future - Base)	1564	672	80	582	10	300	189	10	101	487	20	360	107	25	4	m :	13	1711	536	24	479	33	195	126	0	69	734	31	639	64	21	8	
	Ratio Method (Existing * Future/Base)	1495	596	71	516	đ	349	220	п	118	496	20	367	109	26	4	m	61	1345	465	21	417	29	75	49		12	584	25	605	51	п	4	
	2011 Base Model: 2011 Existing Volume	130	1.69	1.69	1.69	1.69	0.75	0.75	0.75	0.75	1.08	1.08	1.08	1.08	5.53	5.53	553	5.53	1.81	2.15	2.15	2.15	2.15	3.88	3.88		3.88	1.94	1.94	1.94	1.94	036	0.35	
	2040 Future Model Link Volume	1949	1008	120	873	15	261	164	80	88	537	22	397	118	143	22	17	105	2431	1001	44	395	62	293	190	0	103	1133	48	986	66	4	1	
	2011 Adjusted Base Model Volumes	1737	822	86	712	12	115	73	4	39	656	12	485	144	144	22	17	105	1837	871	39	611	Z	132	85	0	47	824	35	717	72	10	4	
PM Peak	Base to Future Model Growth Factor	0.4%	%6'0				8.4%				-0.6%				9:00%				1.3%	0.5%				7.8%				1.5%				-17%		
	2000 Base Model Link Volume	1657	752				60				102				144.				1612	822				11				707				12		
2011 2000 2040	% Approach Volume		100.00%	%26711	86.63%	1.44%	100.00%	62.99%	3.25%	33.77%	100.00%	4.13%	73.93%	21.95%	100.00%	15.38%	11.54%	73.08%		100.00%	4.43%	89.41%	6.16%	100.00%	64.71%	8,00.0	35.29%	100.00%	4.24%	87.06%	8.71%	100,00%	37.04%	and the second
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	717	486	58	421	7	154	16	5	52	605	25	448	133	26	4	m	9	892	406	18	363	25	34	22	0	12	425	18	370	37	27	10	
Existi Ba Futu	Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBR	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	
	Intersection Name							MD	IIIM	/pt	21H	шн											pA	q PI	oleñ	əSp	218/	'P^I	g u	egr	ΡM			

	2040 2035 Final Analysis Analysis Volume Volume	1434 1345	826 760	2 2	757 696	67 62	0	0	0	0	585 585	116 112	492 473	0 0	0	0	0	0
lod selected Ratio Difference Average	Growth 20 Factor (From Ana Ex. Volume) Vol	L70 14	1.87 8	1.87	1.87 7	1.87 6					127 6	127 1						
NCHRP 255 Method selected Ratio Difference Average	Average Gr ((Ratio + Facto Diff.)/2) Ex. V	EZIZ		2	157	67					608	116						
DN	Difference Method A (Ex.+Future () Base) C	2168	947	2	868	11					699	122	517	0				
	Ratio Method (Existing * Future/Base)	5079	705	2	646	25					576	110	466					
	2011 Base Model: 2011 Existing Volume	ini.	1.92	1.92	1.92	1.92					1.64	1.64	1.64					
	2040 Future Model Link Volume	2302	1356	m	1242	110	0				946	180	766	0	0	0	0	0
	2011 Adjusted Base Model Volumes		851	2	<i>911</i>	69	#DIV/0				784	149	534	0	10//NG#			
pM Peak	Base to Future Model Growth Factor	TT	2.6%				#DIV/01				0.8%				i0//NIC#			
	2000 Base Model Link Volume	1381	659				0				722				a			
2011 2000 2040	% Approach Volume		100.00%	0.23%	91.63%	8.14%	.000%				100.00%	19.08%	80.92%	0.00%	100.00%	26.83%	0.00%	73.17%
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	1247	442	1	405	36	0	0	0	0	477	16	386	0	328	88	0	240
Exist Ba Futur	Movement	Total	SB Approach	SBL	587	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBJ	EBR
	Intersection Name					ð	PIN	-N-	ark	d/p	418	ue	910	M				

	2035 Final 40 Analysis Analysis Volume Volume	4595 5101	1303 1194		334 306	328 300	1271 1353	-	-	87 93		1			1689 1799		2.	176 188	5117 5290:	1101 166		0 0	320 327	1805 1842	575 587	1230 1255	0 0	0	0	0	0	2321 2437	0 0	2009 2109
Ratio Difference Average	Growth Factor (From 2040 Analysis Ex. Volume) Volume	0.82 45	2.16 13		2.16 3:	2,16 3;	0.68 12	0.68 37							0.72. 16			0.72	0.83 51	0.89			0.89 3.	0.89 18	0.89 57	0.89 12						0.77 23	-	0.77 20
Ratio Difference Average																																		
	Average ((Ratio + Diff.)/2)	4620	1442	710	369	363	1188	299	808	82	733	251	115	356	1689	96	1417	176	5084	166	671		320	1805	575	1230						2321		2009
	Difference Method (Ex. + Future - Base)	4532	1303	642	334	328	1104	278	751	76	669	239	110	349	1721	16	1444	5/1	5166	1027	695	0	332	1808	576	1232	0	0				2363	0	2045
	Ratio Method (Existing * Future/Base)	4708	1581	778	405	398	1271	320	864	87	767	262	121	383	1657	94	1390	173	5001	956	647		309	1802	574	1228						2278		1972
	2011 Base Model: 2011 Existing Volume	1.20	0.70	0.70	0.70	0.70	1.35	1.35	1.35	135	171	1/1	171	1/1	06.0	06'0	0:90	0.90	0.85	0.53	0.53		0.53	16:0	0.97	76.0						0.88		0.88
	2040 Future Model Link Volume	5631	1100	542	282	277	1719	432	1169	118	1313	449	207	557	1499	85	1258	156	4167	510	345	0	165	1747	557	1190	0	0				2010	0	1740
	2011 Adjusted Base Mode! Volumes	6410	465	229	119	117	2361	594	1605	162	1476	505	233	738	2108	119	1769	220	5192	591	400	0	161	1957	623	1333	0	Ì				2644	0	2289
PM Peak	Base to 2011 Future Model Adjusted Base Growth Model Factor Volumes	制作中	9.8%				-0.8%				-0.4%				%5'0-				-0.6%	-0.5%				-0.4%								-0.8%		
	2010 Base Model Link Volume	6705	224				2604				1538				2339				5224	594				1964				0				2666		
2011 2010 2040	% Approach Volume		100.00%	49.25%	25.60%	25.15%	100.00%	25.14%	67.98%	6.87%	100.00%	34.22%	15.78%	50.00%	100,00%	5.67%	83.91%	10.43%		100.00%	67.69%	0.00%	32.31%	100,00%	31.86%	68.14%	\$000	%00'0				100.00%	0.00%	86.55%
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	5605	668	329	171	168	1746	439	1187	120	862	295	136	431	2330	132	1955	243	6123-	1108	750	0	358	2018	643	1375	0	0	0	0	0	2997	0	2594
Existi Bax Futur	Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	EBL	EBT	EBR	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	E8 Approach	EBL	EBT
	Intersection Name		р	soa	169	នាក់រុ		/pe	og i	що:	du	EH,	/ani	uən	A Is	ntr	ъЭ		1					85	56-	i/ən	ua	vA li	e'11	Jag				

May 2014

	2035 Final Analysis Volume	2673Z	0	0	0	0	1828	0	1521	10E	1152	191	0	961	2453	481	1972	0	YESU	-	0	0	0	0	319	279	0	40	1123	0	109	522	1493	38	430
	Growth Factor (From 2040 Analysis Ex. Volume) Volume	5074					1774	0	1476	298	1039	172	0	856	2261	443	1818	0	2010	COTO	0				331	290	0	41	1172	0	627	545	1632	42	470
NUTHAP 255 Method selected Ratio Difference Average	Growth Factor (From Ex. Volume)	0.65					0.85		0.85	0.85	0.50	0.50		020	0.58	0.58	0.58		101	1WY					1.28	2.85		2.85	1.32		1.32	132	2.73	2.73	273
NCHRP 255 M	Average ((Ratio + Diff.]/2)	4627					1774		1476	298	852	141		111	1954	383	1271		4200	The					331	844	0	91	1172	0	627	545	2243	57	645
	Difference Method (Ex. + Future - Base)	5015	0	1			1786	0	1486	300	1039	172	0	866	2261	443	1818	0	0000	oine	0				331	290	0	41	1077	0	576	501	1632	42	470
	Ratio Method (Existing * Future/Base)	6528					1761		1465	296	665	110		555	1648	323	1325		1020	-					1138	166		141	1266		677	589	2854	73	822
	2011 Base Model: 2011 Existing Volume	0.73					0.92		0.92	0.92	0.64	0.64		0.64	0.64	0.64	0.64		0.00	00.0					0.08	0.08		0.08	0.50		0:50	0.50	0.40	0.40	0.40
	2040 Future Model Link Volume	3110	0				1625	0	1352	273	424	70	0	354	1061	208	853	0	6304	1001	0				95	83	0	12	535	0	340	295	1137	29	327
	2011 Adjusted Base Mode! Volumes	5177					1927	0	1603	324	1079	179	0	005	2171	426	1745	0	- No	Per-					22	19	0	m	446	0	238	207	328	60	94
PM Peak	Base to 2011 Future Model Adjusted Base 2040 Future Growth Model ModelLink Factor Volumes Volume	-1.4%					-0.5%				-2.1%				-1.7%				4 640	104					13.3%				1.5%				9.3%		
	2010 Base Model Link Volume	5248	0				1937				1102				2209				100	000	0				19				439				300		
2011 2010 2040	% Approach Volume		0.00%				100,00%	%00'0	83.19%	16.81%	100,00%	16.59%	0.00%	83.41%	100,00%	19.61%	80.39%	\$600.0			0.00%				100.00%	87.60%	0.00%	12.40%	100.00%	%00.0	53.49%	46.51%	100,00%	2.55%	28.80%
Existing Count Year Base Model Year Future Model Year	2011 Existing Turning Volumes	7153	0	0	0	0	2088	0	1737	351	1694	281	0	1413	3371	661	2710	0	1000	interest	0	0	0	0	258	226	0	32	888	0	475	413	823	21	237
Exist Ba Futu	Movement	Total	SB Approach	SBL	SBT	SBR	WB Approach	WBL	TBW	WBR	NB Approach	NBL	NBT	NBR	E8 Approach	EBL	EBT	EBR	Takel	INIG	SB Approach	SBL	SBT	SBR	WB Approach	WBL	WBT	WBR	NB Approach	NBL	NBT	NBR	EB Approach	183	EBT
	Intersection Name							56 *	I/ər	านอ	VA I	utra	Cet						í		эс) M		- LIV	a u									λ.	ıен

May 2014

FM/ Peak SM/ Peak 2010 Base to Model Link 2011 Adjusted Base 2040 Future Nodel Link Growth Model Model Link Model Volume Factor Volumes 2040 Future Model 1502 3.14s 1548s 2040 Future 1502 3.14s 1548s 2040 Future 1502 3.14s 1548s 261 1502 3.14s 1548s 261 1502 3.14s 1548s 261 1502 2.14s 263 265 1023 2.58s 1058 1294 1023 2.58s 1058 265 259 2.58s 266 265 254 2.58s 256 266 259 2.58s 266 261 259 2.58s 266 268 254 256 266 268 254 256 266 268 254 <
Existing Count Vear Base Model Year 2011 Base Model Year 2010 Future Model Year 2010 Future Model Year 2040 Turning SApproach Volumes 9000000 Othor 0.000%

2	Avernent	Existing Count Year Base Model Year Future Model Year Future 2011 Existing 1 Turning nt Volumes	2011 2010 2040 2040 % Approach Volume	2010 Base Model Link Volume	PM Peak Base to Future Model Growth Factor	PM Peak Base to 2011 Future Model Adjusted Base Foroth Model Factor Volumes	2040 Future Model Link Volume	2011 Base Model: 2011 Existing Volume	Ratio Method (Existing* Future/Base)	Difference Method (Ex. + Future - Base)	Average ((Ratio + Diff.)/2)	Difference Average Average Growth Eactor (From Ex. Volume)	Ratio Difference Average Growth Factor (From 2040 Analysis Ex. Volume) Volume	2035 Final Analysis Volume
	Total	35738		1907	274	1958	LEDE	0.70	4935	4268	4601	1.68	1949	A148
8S	SB Approach	738	100.00%	127	8.8%	138	461	0.19	2463	1061	1061	1.44	1061	1005
	SBL	16	12.33%			17	57	0.19	304	131			LEL.	124
	SBT	233	31.57%			44	146	0.19	778	335			335	317
	SBR	414	56.10%			11	259	61.0	1382	595			595	564
W	WB Approach	442	100.00%	741	-0.4%	738	641	1.67	384	345	365	0.83	365	378
	WBL	82	18.55%			137	119	1.67	11	64	58	0.83	58	01
	WBT	327	73.98%			546	474	1.67	284	255	270	0.83	270	280
	WBR	33	7.47%			55	48	1.67	29	26	27	0.83	27	28
NE	NB Approach	651	100.00%	285	2.5%	292	500	0.45	1114	859	986	1.52	986	929
	NBL	133	20.43%			60	102	0.45	228	175	202	152	202	190
	NBT	162	44.70%			131	224	0.45	498	384	141	152	144	415
	NBR	227	34.87%			102	174	0.45	388	299	344	1.52	344	324
8	EB Approach	202	100.00%	754	4.8%	790	1835	0.87	2107	1952	2029	2.24	2029	1835
	EBL	302	33.30%			263	611	0.87	101	650	676	2.24	676	611
	EBT	484	53.36%			422	6/6	0.87	1124	1042	1083	2.24	1083	980
	FRR.	161.	12 24%			105	245	101	181	760	126	PLL	175	245

Appendix 4
"No Build" Traffic Analysis and Queuing Reports

Queues

	-	-	*	+	۲	1	*	
Lane Group	EBL	EBT	WBL	WBT	WBR	NET	SWT	
Lane Group Flow (vph)	58	315	95	2589	153	868	579	
v/c Ratio	0.29	0.11	0.12	1.36	0.16	1.12	0.77	
Control Delay	10.0	10.3	5.5	191.5	4.7	104.1	35.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	10.0	10.3	5.5	191.5	4.7	104.1	35.7	
Queue Length 50th (ft)	12	31	17	~1165	15	~344	156	
Queue Length 95th (ft)	26	46	33	#1301	44	#469	225	
Internal Link Dist (ft)		460		823		251	355	
Turn Bay Length (ft)	175		330					
Base Capacity (vph)	202	2781	768	1897	940	776	756	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.11	0.12	1.36	0.16	1.12	0.77	

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

Synchro 7 - Report Page 1

	-	-	7	F	+	٤	1	1	1	6	*	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	7	44Þ		٦	^	1		414			41.	
Volume (vph)	55	275	25	90	2460	145	65	750	10	30	350	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		-1.0	6.0	3.0		3.0			3.0	
Lane Util. Factor	1.00	0.91		1.00	0.95	1.00		0.95			0.95	
Frt	1.00	0.99		1.00	1.00	0.85		1.00			0.95	
Fit Protected	0.95	1.00		0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)	1770	5022		1770	3539	1583		3519			3366	
Flt Permitted	0.08	1.00		0.55	1.00	1.00		0.74			0.71	
Satd. Flow (perm)	150	5022		1030	3539	1583		2616			2382	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	58	289	26	95	2589	153	68	789	11	32	368	179
RTOR Reduction (vph)	0	10	0	0	0	43	0	1	0	0	51	0
Lane Group Flow (vph)	58	305	0	95	2589	110	0	867	0	0	528	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6	1	3 4111	4			8	
Permitted Phases	2	-		6		6	4			8	-	
Actuated Green, G (s)	53.1	48.8		50.7	47.6	47.6		26.0			26.0	
Effective Green, g (s)	55.1	53.8		60.7	52.6	55.6		29.0			29.0	
Actuated g/C Ratio	0.56	0.54		0.61	0.53	0.56		0.29			0.29	
Clearance Time (s)	4.0	11.0		4.0	11.0	11.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	170	2732		693	1882	890		767			698	
v/s Ratio Prot	c0.02	0.06		0.01	c0.73							
v/s Ratio Perm	0.17			0.07		0.07		c0.33			0.22	
v/c Ratio	0.34	0.11		0.14	1.38	0.12		1.13			0.76	
Uniform Delay, d1	21.0	10.9		7.8	23.2	10.2		35.0			31.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	1.2	0.0		0.1	172.5	0.1		74.8			4.7	
Delay (s)	22.2	11.0		7.9	195.6	10.2		109.8			36.4	
Level of Service	С	В		A	F	В		F			D	
Approach Delay (s)		12.7			179.3			109.8			36.4	
Approach LOS		В			F			F			D	
Intersection Summary												
HCM Average Control Dela	ay		135.3	H	CM Leve	of Service	Э		F			
HCM Volume to Capacity r	atio		1.27									
Actuated Cycle Length (s)			98.9	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliz	ation		125.4%	IC	U Level	of Service			н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 10: Southern Ave NE & MD 214 West

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

HCM Unsignalized Intersection Capacity Analysis 20: Davey Street & MD 214 West

	-	+	7	*	+	٤	1	1	1	6	*	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	۲	4 † ‡		1	*††			÷.	1		4	_
Volume (veh/h)	155	2425	10	0	300	15	30	5	40	5	0	5
Sign Control		Free			Free	14		Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	163	2553	11	0	316	16	32	5	42	5	0	1
Pedestrians	144				- 14	19		-		-		
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		Nono			Hono							
Upstream signal (ft)		903										
pX, platoon unblocked		500										
vC, conflicting volume	332			2563			2995	3216	856	1546	3213	113
vC1, stage 1 conf vol	UUZ			2000			2000	0210	000	1040	0210	- 115
vC2, stage 2 conf vol												
vCu, unblocked vol	332			2563			2995	3216	856	1546	3213	113
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)	4.1			4.1			1.5	0.0	0.5	1.5	0.5	0.0
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	87			100			0.0	37	86	83	100	99
cM capacity (veh/h)	1225			169			5	8	301	30	8	918
												310
Direction, Lane #	EB 1	EB 2	EB 3	EB 4	WB1	WB 2	WB 3	WB 4	NE 1	NE 2	SW 1	_
Volume Total	163	1021	1021	521	0	126	126	79	37	42	11	
Volume Left	163	0	0	0	0	0	0	0	32	0	5	
Volume Right	0	0	0	11	0	0	0	16	0	42	5	
cSH	1225	1700	1700	1700	1700	1700	1700	1700	6	301	58	
Volume to Capacity	0.13	0.60	0.60	0.31	0.00	0.07	0.07	0.05	6.55	0.14	0.18	
Queue Length 95th (ft)	11	0	0	0	0	0	0	0	Err	12	15	
Control Delay (s)	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Err	18.9	79.8	
Lane LOS	A								F	С	F	
Approach Delay (s) Approach LOS	0.5				0.0				4676.3 F		79.8 F	
Intersection Summary												
Average Delay			118.0									
Intersection Capacity Utiliza	ation		65.5%	10	U Level	of Service			С			

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	1	1	1	4	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	42	658	132	132	2868	542	500	174	58	174	
v/c Ratio	0.26	0.25	0.15	0.27	1.02	0.73	0.65	0.36	0.32	0.49	
Control Delay	17.6	21.7	4.4	15.5	53.1	60.3	57.4	8.1	66.8	66.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.6	21.7	4.4	15.5	53.1	60.3	57.4	8.1	66.8	66.5	
Queue Length 50th (ft)	15	128	0	50	~1123	255	235	0	54	84	
Queue Length 95th (ft)	37	183	42	m105	#1310	309	288	61	99	122	
nternal Link Dist (ft)		307			296		726			986	
Turn Bay Length (ft)	200		200	175		350		575	200		
Base Capacity (vph)	162	2627	853	486	2802	858	885	526	443	880	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.25	0.15	0.27	1.02	0.63	0.56	0.33	0.13	0.20	

Queues 90: Addison Rd. & MD 214 West

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	۲	^	1	٦	***		ሻሻ	11	1	7	41	_
Volume (vph)	40	625	125	125	2625	100	515	475	165	55	155	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	6.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		0.97	0.95	1.00	1.00	0.95	
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	0.99	
Fit Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	5085	1583	1770	5057		3433	3539	1583	1770	3506	
Flt Permitted	0.05	1.00	1.00	0.34	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	98	5085	1583	624	5057		3433	3539	1583	1770	3506	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	42	658	132	132	2763	105	542	500	174	58	163	11
RTOR Reduction (vph)	0	0	67	0	2	0	0	0	136	0	4	C
Lane Group Flow (vph)	42	658	65	132	2866	0	542	500	38	58	170	C
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Split	NA	Perm	Split	NA	
Protected Phases	1	6	1 0.111	5	2		3	3	1 onn	4	4	
Permitted Phases	6		6	2	-			Ű	3			
Actuated Green, G (s)	78.9	73.4	73.4	87.5	77.7		29.6	29.6	29.6	12.2	12.2	
Effective Green, g (s)	84.9	77.4	74.4	92.2	81.7		32.6	32.6	32.6	15.2	15.2	
Actuated g/C Ratio	0.57	0.52	0.50	0.61	0.54		0.22	0.22	0.22	0.10	0.10	
Clearance Time (s)	6.0	7.0	7.0	6.0	7.0		6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	2.5	5.0	5.0	2.5	5.0		2.5	2.5	2.5	2.5	2.5	
Lane Grp Cap (vph)	150	2624	785	481	2754		746	769	344	179	355	_
v/s Ratio Prot	0.02	0.13	,	c0.02	c0.57		c0.16	0.14		0.03	c0.05	
v/s Ratio Perm	0.14		0.04	0.15					0.02			
v/c Ratio	0.28	0.25	0.08	0.27	1.04		0.73	0.65	0.11	0.32	0.48	
Uniform Delay, d1	32.3	20.2	19.9	12.5	34.1		54.6	53.5	47.1	62.6	63.7	
Progression Factor	1.00	1.00	1.00	1.11	0.93		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.7	0.2	0.2	0.2	27.6		3.3	1.8	0.1	0.8	0.7	
Delay (s)	33.1	20.4	20.1	14.1	59.2		57.9	55.3	47.2	63.4	64.4	
Level of Service	С	С	С	В	E		E	E	D	E	E	
Approach Delay (s)		21.0			57.3			55.3			64.2	
Approach LOS		С			E			Е			E	
Intersection Summary												
HCM Average Control Dela	ay		51.4	н	CM Leve	of Servic	e		D			
HCM Volume to Capacity n			0.86									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	ation		89.7%			of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 90: Addison Rd. & MD 214 West

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

HCM Unsignalized Intersection Capacity Analysis 95: MD 214 West

	-+	>	1	+	1	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	**	LUIT	T	***	Y	NBIT				
Volume (veh/h)	695	130	265	2525	150	100				
Sign Control	Free	100	200	Free	Stop	100				
Grade	0%			0%	0%					
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95				
Hourly flow rate (vph)	732	137	279	2658	158	105				
Pedestrians	IUL	107	210	2000	100	100				
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)										
Median type	None			None						
Median storage veh)	NONG			Nono						
Upstream signal (ft)	376									
oX, platoon unblocked	5/0		0.93		0.93	0.93				
C, conflicting volume			868		2244	312				
/C1, stage 1 conf vol			000		2244	012				
VC2, stage 2 conf vol										
VCu, unblocked vol			607		2081	11				
C, single (s)			4.1		6.8	6.9				
C, 2 stage (s)			4.1		0.0	0.0				
F (s)			2.2		3.5	3.3				
00 queue free %			69		0.0	89				
cM capacity (veh/h)			902		30	996				
	CD 4	50.0						ND 4		
Direction, Lane # /olume Total	EB 1 293	EB 2 293	EB 3 283	WB 1	WB 2 886	WB 3 886	WB 4 886	NB 1 263		
Volume Total Volume Left	293	293	203	279 279	000	000	000	158		
Volume Right	0	0	137	0	0	0	0	105		
SH	1700	1700	1700	902	1700	1700	1700	48		
Volume to Capacity	0.17	0.17	0.17	0.31	0.52	0.52	0.52	5.44		
Queue Length 95th (ft)	0.17	0.17	0.17	33	0.52	0.52	0.52	Err		
Control Delay (s)	0.0	0.0	0.0	10.8	0.0	0.0	0.0	Err		
Lane LOS	0.0	0.0	0.0	B	0.0	0.0	0.0	F		
Approach Delay (s)	0.0			1.0				Eπ		
Approach LOS	0.0			1.0				F		
Intersection Summary										
Average Delay			647.5							
Intersection Capacity Utiliza Analysis Period (min)	ation		69.9% 15	10	CU Level	of Service			C	

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

HCM Unsignalized Intersection Capacity Analysis

Movement Lane Configurations		-	•	-	-	1	1	1	1	1	+	*
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	۲	***		٦	**			4			4	
Volume (veh/h)	5	700	90	145	2710	10	60	0	85	5	5	20
Sign Control		Free		110	Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	5	737	95	153	2853	11	63	0	89	5	5	21
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)					941							
pX, platoon unblocked	0.73						0.73	0.73		0.73	0.73	0.73
vC, conflicting volume	2863			832			2075	3963	293	3509	4005	956
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	2252			832			1169	3763	293	3139	3821	C
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			81			0	100	87	0	0	97
cM capacity (veh/h)	164			797			0	2	703	2	2	789
Direction, Lane #	EB 1	EB 2	EB 3	EB 4	WB 1	WB 2	WB 3	WB 4	NB 1	SB 1		
Volume Total	5	295	295	242	153	1141	1141	581	153	32		
Volume Left	5	0	0	0	153	0	0	0	63	5		
Volume Right	0	0	0	95	0	0	0	11	89	21		
cSH	164	1700	1700	1700	797	1700	1700	1700	0	7		
Volume to Capacity	0.03	0.17	0.17	0.14	0.19	0.67	0.67	0.34	Err	4.65		
Queue Length 95th (ft)	2	0	0	0	18	0	0	0	Err	Err		
Control Delay (s)	27.7	0.0	0.0	0.0	10.6	0.0	0.0	0.0	Err	Err		
Lane LOS	D				В				F	F		
Approach Delay (s)	0.2				0.5				Err	Err		
Approach LOS									F	F		
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilizati Analysis Period (min)	on		81.1%	IC	U Level	of Service			D			

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	+	+	1	~	
Lane Group	EBL	EBT	WBT	SBL	SBR	
Lane Group Flow (vph)	32	805	2863	21	95	
v/c Ratio	0.22	0.18	0.68	0.13	0,49	
Control Delay	22.3	0.6	7.2	63.4	37.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.3	0.6	7.2	63.4	37.1	
Queue Length 50th (ft)	3	9	383	20	36	
Queue Length 95th (ft)	25	17	536	47	95	
Internal Link Dist (ft)		861	1511	430		
Turn Bay Length (ft)	225			250		
Base Capacity (vph)	143	4429	4199	422	421	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.22	0.18	0.68	0.05	0.23	

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	126	+		6	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	CDL	<u>+++</u>		VVDIX	ODL	JOR		
	30	765		20		90		
Volume (vph)			2700	20	20			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900 3.0	1900		
Total Lost time (s)	3.0	3.0	3.0			3.0		
Lane Util. Factor	1.00	0.91	0.91		1.00	1.00		
Frt	1.00	1.00	1.00		1.00	0.85		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1770	5085	5080		1770	1583		
Flt Permitted	0.03	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	61	5085	5080	_	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	32	805	2842	21	21	95		
RTOR Reduction (vph)	0	0	0	0	0	52		
Lane Group Flow (vph)	32	805	2863	0	21	43		
Turn Type	pm+pt	NA	NA		NA	custom		
Protected Phases	1	6	2					
Permitted Phases	6				8	8		
Actuated Green, G (s)	126.6	126.6	117.9		10.4	10.4		
Effective Green, g (s)	128.6	130.6	121.9		13.4	13.4		
Actuated g/C Ratio	0.86	0.87	0.81		0.09	0.09		
Clearance Time (s)	5.0	7.0	7.0		6.0	6.0		
Vehicle Extension (s)	3.0	6.0	6.0		3.0	3.0		
Lane Grp Cap (vph)	117	4427	4128		158	141		
v/s Ratio Prot	c0.01	0.16	c0.56					
v/s Ratio Perm	0.23	32.95			0.01	c0.03		
v/c Ratio	0.27	0.18	0.69		0.13	0.31		
Uniform Delay, d1	9.6	1.5	6.0		62.9	63.9		
Progression Factor	4.29	0.34	1.00		1.00	1.00		
Incremental Delay, d2	1.3	0.1	1.0		0.4	1.2		
Delay (s)	42.3	0.6	7.0		63.3	65.2		
Level of Service	D	A	A		E	E		
Approach Delay (s)		2.2	7.0		64.8	-		
Approach LOS		A	A		E			
Intersection Summary				_				
HCM Average Control Dela	ay		7.7	H	CM Leve	of Service	A	
HCM Volume to Capacity r			0.64					
Actuated Cycle Length (s)	ALC ALCOMENTS		150.0	S	um of los	t time (s)	9.0	
Intersection Capacity Utiliz	ation		65.9%			of Service	C	
Analysis Period (min)			15		and the second s		-	

HCM Signalized Intersection Capacity Analysis 110: MD 214 West & Cindy

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	+	1	+	1	1	1	+	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	126	68	52	21	463	16	590	
v/c Ratio	0.33	0.20	0.11	0.05	0.16	0.03	0.20	
Control Delay	13,2	13.3	5.9	5.9	5.3	5.7	5.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.2	13.3	5.9	5.9	5.3	5.7	5.4	
Queue Length 50th (ft)	16	10	1	2	15	1	20	
Queue Length 95th (ft)	55	36	19	10	33	8	41	
nternal Link Dist (ft)	623		482		695		523	
Turn Bay Length (ft)				150		125		
Base Capacity (vph)	1323	1234	1578	765	4960	869	4945	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.10	0.06	0.03	0.03	0.09	0.02	0.12	

Queues

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

Lane Configurations Volume (vph) Ideal Flow (vphpl) 19 Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm)	90 900 900 95 0	EBT	EBR 25 1900	WBL 65 1900 5.0 1.00 1.00 0.95 1770 0.68	WBT 5 1900 5.0 1.00 0.86 1.00 1610	WBR 45 1900	NBL 20 1900 5.0 1.00 1.00 0.95	NBT ↑↑↑ 425 1900 5.0 0.91 0.99 1.00	NBR 15 1900	SBL 15 1900 5.0 1.00 1.00	SBT ↑↑₽ 530 1900 5.0 0.91 0.91	
Lane Configurations Volume (vph) Ideal Flow (vphpl) 19 Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	900 0.95 95	 ♣ 5 1900 5.0 1.00 0.97 0.96 1745 0.75 1349 	25	50 1900 5.0 1.00 1.00 0.95 1770 0.68	5 1900 5.0 1.00 0.86 1.00 1610	45	20 1900 5.0 1.00 1.00	↑↑↑ 425 1900 5.0 0.91 0.99	15	15 1900 5.0 1.00	↑↑₽ 530 1900 5.0 0.91	30
Volume (vph) Ideal Flow (vphpl) 19 Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	900 0.95 95	5 1900 5.0 1.00 0.97 0.96 1745 0.75 1349		1900 5.0 1.00 1.00 0.95 1770 0.68	1900 5.0 1.00 0.86 1.00 1610		1900 5.0 1.00 1.00	425 1900 5.0 0.91 0.99		1900 5.0 1.00	530 1900 5.0 0.91	30 1900
Ideal Flow (vphpl) 19 Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	900 0.95 95	1900 5.0 1.00 0.97 0.96 1745 0.75 1349		1900 5.0 1.00 1.00 0.95 1770 0.68	1900 5.0 1.00 0.86 1.00 1610		1900 5.0 1.00 1.00	1900 5.0 0.91 0.99		1900 5.0 1.00	1900 5.0 0.91	1900
Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0).95 95	5.0 1.00 0.97 0.96 1745 0.75 1349		5.0 1.00 1.00 0.95 1770 0.68	5.0 1.00 0.86 1.00 1610		5.0 1.00 1.00	5.0 0.91 0.99		5.0 1.00	5.0 0.91	
Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	95	1.00 0.97 0.96 1745 0.75 1349		1.00 1.00 0.95 1770 0.68	1.00 0.86 1.00 1610		1.00 1.00	0.91 0.99		1.00	0.91	
Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	95	0.97 0.96 1745 0.75 1349		0.95 1770 0.68	1.00 1610		1.00	0.99		1.00	0.00	
Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	95	1745 0.75 1349		0.95 1770 0.68	1.00 1610						0.99	
Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	95	1745 0.75 1349		1770 0.68	1610		0.33	1.00		0.95	1.00	
Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0	95	0.75 1349		0.68			1770	5059		1770	5044	
Satd. Flow (perm) Peak-hour factor, PHF 0	95	1349	1		1.00		0.42	1.00		0.48	1.00	
Peak-hour factor, PHF 0	95			1260	1610		780	5059		887	5044	
	95	0.00	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
		5	26	68	5	47	21	447	16	16	558	32
RTOR Reduction (vph)		15	0	0	38	0	0	3	0	0	6	0
Lane Group Flow (vph)	0	111	0	68	14	Ő	21	460	0	16	584	0
	erm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	onn	8		1 Only	4		1 onn	6		1 Ginn	2	
Permitted Phases	8			4			6			2	-	
Actuated Green, G (s)		6.4		6.4	6.4		16.5	16.5		16.5	16.5	
Effective Green, g (s)		6.4		6.4	6.4		16.5	16.5		16.5	16.5	
Actuated g/C Ratio		0.19		0.19	0.19		0.50	0.50		0.50	0.50	
Clearance Time (s)		5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0		3.0	3.0		6.0	6.0		6.0	6.0	
Lane Grp Cap (vph)	-	262		245	313		391	2537		445	2530	
v/s Ratio Prot				- 10	0.01			0.09			c0.12	
v/s Ratio Perm		c0.08		0.05			0.03			0.02		
v/c Ratio		0.42		0.28	0.05		0.05	0.18		0.04	0.23	
Uniform Delay, d1		11.6		11.3	10.8		4.2	4.5		4.2	4.6	
Progression Factor		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		1.1		0.6	0.1		0.2	0.1		0.1	0.1	
Delay (s)		12.7		11.9	10.8		4.4	4.6		4.3	4.8	
Level of Service		В		В	В		A	A		А	A	
Approach Delay (s)		12.7			11.4			4.6			4.7	
Approach LOS		В			В			А			A	
Intersection Summary												
HCM Average Control Delay			6.0	Ĥ	CM Leve	of Servic	e		A			
HCM Volume to Capacity ratio			0.28									
Actuated Cycle Length (s)			32.9	S	um of los	time (s)			10.0			
Intersection Capacity Utilization			38.4%	IC	ULevel	of Service			А			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 130: Garrett Morgan & Ridgefield

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
Lane Group Flow (vph)	368	68	363	358	63	126	
v/c Ratio	0.23	0.13	0.44	0.10	0.21	0.34	
Control Delay	13.2	5.1	18.1	3.4	21.1	7.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.2	5.1	18.1	3.4	21.1	7.9	
Queue Length 50th (ft)	27	0	43	10	15	0	
Queue Length 95th (ft)	52	22	88	21	48	38	
Internal Link Dist (ft)	667			1365	395		
Turn Bay Length (ft)		100	150				
Base Capacity (vph)	3436	1092	2320	5085	1428	1302	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.06	0.16	0.07	0.04	0.10	

Queues

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

7/24/2012

	×	2	~	×	3	~		
Movement	SET	SER	NWL	NWT	NEL	NER		
Lane Configurations	*††		ሻሻ	***	7	۲		-
Volume (vph)	350	65	345	340	60	120		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Lane Util. Factor	0.91	1.00	0.97	0.91	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Fit Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	5085	1583	3433	5085	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	5085	1583	3433	5085	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	368	68	363	358	63	126		
RTOR Reduction (vph)	0	47	0	0	0	110		
Lane Group Flow (vph)	368	21	363	358	63	16		
Turn Type		custom	Prot	NA	NA	Perm		
Protected Phases			1	6	4			
Permitted Phases	2	2				4		
Actuated Green, G (s)	14.4	14.4	10.9	30.3	5.8	5.8		
Effective Green, g (s)	14.4	14.4	10.9	30.3	5.8	5.8		
Actuated g/C Ratio	0.31	0.31	0.24	0.66	0.13	0.13		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	6.0	6.0	3.0	6.0	3.0	3.0		
Lane Grp Cap (vph)	1588	494	812	3342	223	199		
v/s Ratio Prot			c0.11	0.07	c0.04			
v/s Ratio Perm	c0.07	0.01				0.01		
v/c Ratio	0.23	0.04	0.45	0.11	0.28	0.08		
Uniform Delay, d1	11.7	11.0	15.0	2.9	18.3	17.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.2	0.1	0.4	0.0	0.7	0.2		
Delay (s)	12.0	11.1	15.4	3.0	19.0	18.0		
Level of Service	В	В	В	A	В	В		
Approach Delay (s)	11.8			9.2	18.3			
Approach LOS	В			А	В			
Intersection Summary								
HCM Average Control Dela	iy		11.3	н	CM Level	of Service	В	
HCM Volume to Capacity ra			0.32					
Actuated Cycle Length (s)			46.1	S	um of lost	t time (s)	15.0	
Intersection Capacity Utiliza	ation		34.8%			of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 140: Morgan Metro Park and Ride & Garrett A Morgan

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٢	-	1	+	1	1	1	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	132	964	158	2474	296	435	289	174	200	168	
v/c Ratio	0.44	0.33	0.78	0.87	0.54	0.76	0.18	0.52	0.58	0.47	
Control Delay	77.9	18.4	103.7	37.1	66.0	74.7	0.3	78.2	80.0	23.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.9	18.4	103.7	37.1	66.0	74.7	0.3	78.2	80.0	23.9	
Queue Length 50th (ft)	73	187	91	841	176	271	0	96	114	66	
Queue Length 95th (ft)	109	256	#151	#1136	222	327	0	136	156	107	
Internal Link Dist (ft)		1283		929		896			1365		
Turn Bay Length (ft)	350		600		350		200	500			
Base Capacity (vph)	301	2953	202	2835	877	908	1583	990	1020	354	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.33	0.78	0.87	0.34	0.48	0.18	0.18	0.20	0.47	

Queues

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	*	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	17	441		ኘካ	***		ሻሻ	41	1	ኘካ	**	1
Volume (vph)	125	790	125	150	2200	150	420	275	275	165	190	160
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	1	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	0.97	0.91		0.97	0.91		0.86	0.86	1.00	0.97	0.95	1.00
Frt	1.00	0.98		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	0.98	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	4981		3433	5037		3044	3151	1583	3433	3539	1583
Flt Permitted	0.95	1.00		0.95	1.00		0.95	0.98	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	4981		3433	5037		3044	3151	1583	3433	3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	132	832	132	158	2316	158	442	289	289	174	200	168
RTOR Reduction (vph)	0	7	0	0	3	0	0	0	0	0	0	61
Lane Group Flow (vph)	132	957	0	158	2471	Ő	296	435	289	174	200	107
Turn Type	Prot	NA		Prot	NA		Split	NA	Free	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	1100	3	3	pinton
Permitted Phases		U		0	2		4	-	Free	0		3
Actuated Green, G (s)	12.9	97.6		8.0	92.7		28.9	28.9	170.0	14.5	14.5	27.4
Effective Green, g (s)	14.9	100.6		10.0	95.7		30.9	30.9	170.0	16.5	16.5	31.4
Actuated g/C Ratio	0.09	0.59		0.06	0.56		0.18	0.18	1.00	0.10	0.10	0.18
Clearance Time (s)	5.0	6.0		5.0	6.0		5.0	5.0	1.00	5.0	5.0	5.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0		2.5	2.5		2.5	2.5	3.0
Lane Grp Cap (vph)	301	2948	-	202	2836	-	553	573	1583	333	343	292
v/s Ratio Prot	c0.04	0.19		0.05	c0.49		0.10	c0.14	1000	0.05	c0.06	0.03
v/s Ratio Perm	00.04	0.15		0.00	00.40		0.10	00.14	0.18	0.00	00.00	0.04
v/c Ratio	0.44	0.32		0.78	0.87		0.54	0.76	0.18	0.52	0.58	0.37
Uniform Delay, d1	73.6	17.5		78.9	31.9		63.0	66.0	0.0	73.0	73.5	60.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	0.3		25.4	4.0		0.8	5.5	0.3	1.1	2.1	0.8
Delay (s)	74.6	17.8		104.3	35.9		63.8	71.5	0.3	74.1	75.5	61.4
Level of Service	E	B		F	D		E	E	A	E	E	E
Approach Delay (s)	-	24.7			40.0		-	49.1		-	70.7	_
Approach LOS		C			D			D			E	
Intersection Summary					_					_		
HCM Average Control Dela	iy		41.7	Ĥ	CM Leve	of Servic	е		D			
HCM Volume to Capacity ra	atio		0.78									
Actuated Cycle Length (s)			170.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	ation		78.5%	10	U Level	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 150: Ritchie/Garrett A Morgan & MD 214 West

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

7040040

	٢	+	1	+	*	1	1	4	ţ	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	74	753	95	2358	205	137	189	272	233	242	
v/c Ratio	0.44	0.24	0.19	0.74	0.20	0.44	0.57	0.68	0.56	0.58	
Control Delay	26.1	12.9	8.2	22.3	6.0	68.8	61.7	70.4	65.9	12.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.1	12.9	8.2	22.3	6.0	68.8	61.7	70.4	65.9	12.1	
Queue Length 50th (ft)	19	108	25	538	28	67	80	150	126	0	
Queue Length 95th (ft)	76	164	55	768	80	100	120	198	170	79	
nternal Link Dist (ft)		1835		2003			924		2121		
Turn Bay Length (ft)	300		225		325	350		300		150	
Base Capacity (vph)	170	3186	504	3206	1044	881	896	781	806	586	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.24	0.19	0.74	0.20	0.16	0.21	0.35	0.29	0.41	

Queues 160: Shady Glen Dr/Hill Rd & MD 214 West

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٦	+	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	**		7	^	1	ካካ	† 1>		ሻሻ	↑ Ъ	1
Volume (vph)	70	675	40	90	2240	195	130	135	45	350	130	230
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	0.97	0.95		0.86	0.86	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.96		1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	0.98	1.00
Satd. Flow (prot)	1770	5043		1770	5085	1583	3433	3407		3044	3139	1583
Flt Permitted	0.04	1.00		0.33	1.00	1.00	0.95	1.00		0.95	0.98	1.00
Satd. Flow (perm)	80	5043		611	5085	1583	3433	3407		3044	3139	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	74	711	42	95	2358	205	137	142	47	368	137	242
RTOR Reduction (vph)	0	3	0	0	0	46	0	26	0	0	0	210
Lane Group Flow (vph)	74	750	0	95	2358	159	137	163	0	272	233	32
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Split	NA	-	Split	NA	Perm
Protected Phases	1	6		5	2		3	3		4	4	(•111
Permitted Phases	6			2		2	-					4
Actuated Green, G (s)	99.8	91.7		99.6	91.6	91.6	10.5	10.5		16.8	16.8	16.8
Effective Green, g (s)	103.8	94.7		103.6	94.6	94.6	13.5	13.5		19.8	19.8	19.8
Actuated g/C Ratio	0.69	0.63		0.69	0.63	0.63	0.09	0.09		0.13	0.13	0.13
Clearance Time (s)	5.0	6.0		5.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	2.5	2.5		2.5	2.5	2.5
Lane Grp Cap (vph)	169	3184		499	3207	998	309	307		402	414	209
v/s Ratio Prot	c0.03	0.15		0.01	c0.46		0.04	c0.05		c0.09	0.07	
v/s Ratio Perm	0.27	10000		0.12		0.10						0.02
v/c Ratio	0.44	0.24		0.19	0.74	0.16	0.44	0.53		0.68	0.56	0.15
Uniform Delay, d1	21.6	12.0		7.8	19.1	11.4	64.7	65.2		62.0	61.0	57.7
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	1.8	0.2		0.2	1.5	0.3	0.7	1.3		4.1	1.4	0.2
Delay (s)	23.4	12.1		8.0	20.6	11.7	65.4	66.5		66.1	62.5	57.9
Level of Service	С	В		А	С	В	E	E		E	E	E
Approach Delay (s)		13.2			19.5			66.0			62.3	
Approach LOS		В			В			E			E	
Intersection Summary												
HCM Average Control Dela	ay		28.7	Н	CM Leve	of Servic	e		С	_		
HCM Volume to Capacity n	atio		0.69									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	ation		74.3%	IC	U Level	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 160: Shady Glen Dr/Hill Rd & MD 214 West

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	+	7	+	*	1	1	ŧ	1	
Lane Group	EBT	EBR	WBT	WBR	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	10	16	258	95	406	74	495	5	
v/c Ratio	0.02	0.04	0.71	0.19	0.37	0.08	0.47	0.01	
Control Delay	13.4	7.3	29.1	4.8	8.4	2.4	9.7	4.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.4	7.3	29.1	4.8	8.4	2.4	9.7	4.6	
Queue Length 50th (ft)	2	0	73	0	62	0	82	0	
Queue Length 95th (ft)	11	10	138	25	142	16	185	4	
nternal Link Dist (ft)	480		402		2121		554		
Turn Bay Length (ft)								100	
Base Capacity (vph)	606	595	501	645	1085	964	1043	936	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.03	0.51	0.15	0.37	0.08	0.47	0.01	

Queues 170[.] Hill Rd & Willow Hill R

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		र्भ	1		4	1		4	1	_	र्भ	1
Volume (vph)	5	5	15	235	10	90	10	375	70	40	430	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Lane Util. Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Frt		1.00	0.85		1.00	0.85		1.00	0.85		1.00	0.85
Fit Protected		0.98	1.00		0.95	1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)		1817	1583		1778	1583		1860	1583		1855	1583
Flt Permitted		0.88	1.00		0.73	1.00		0.99	1.00		0.95	1.00
Satd. Flow (perm)		1639	1583		1356	1583		1840	1583		1767	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	5	16	247	11	95	11	395	74	42	453	5
RTOR Reduction (vph)	0	0	12	0	0	69	0	0	30	0	0	2
Lane Group Flow (vph)	0	10	4	0	258	26	0	406	44	0	495	3
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1 0.111	4	1 onn	1 onn	8	r onn	1 0.111	2	1 01111	1 onth	6	(only
Permitted Phases	4		4	8	-	8	2		2	6		6
Actuated Green, G (s)	- in	15.4	15.4	-	15.4	15.4	-	33.7	33.7	-	33.7	33.7
Effective Green, g (s)		15.4	15.4		15.4	15.4		33.7	33.7		33.7	33.7
Actuated g/C Ratio		0.27	0.27		0.27	0.27		0.59	0.59		0.59	0.59
Clearance Time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)		442	427		366	427		1086	934		1043	934
v/s Ratio Prot												
v/s Ratio Perm		0.01	0.00		c0.19	0.02		0.22	0.03		c0.28	0.00
v/c Ratio		0.02	0.01		0.70	0.06		0.37	0.05		0.47	0.00
Uniform Delay, d1		15.3	15.3		18.8	15.5		6.2	4.9		6.7	4.8
Progression Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2		0.0	0.0		6.1	0.1		1.0	0.1		1.5	0.0
Delay (s)		15.3	15.3		24.9	15.5		7.1	5.0		8.2	4.8
Level of Service		В	В		С	В		А	А		Α	A
Approach Delay (s)		15.3			22.4			6.8			8.2	
Approach LOS		В			С			А			A	
Intersection Summary						_						
HCM Average Control Delay			11.5	H	CM Leve	of Service	9		В			
HCM Volume to Capacity ratio			0.55									
Actuated Cycle Length (s)			57.1	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization	ı		75.3%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 170: Hill Rd & Willow Hill Rd

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	+	7	1	+	*	1	1	1	4	4	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	153	1232	226	468	2258	374	179	132	389	211	321	184
v/c Ratio	0.45	0.83	0.36	0.52	0.98	0.46	0.69	0.48	0.33	0.28	0.79	0.38
Control Delay	68.0	55.1	6.3	52.2	53.5	18.5	73.3	63.3	30.7	48.5	68.9	7.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.0	55.1	6.3	52.2	53.5	18.5	73.3	63.3	30.7	48.5	68.9	7.7
Queue Length 50th (ft)	74	413	0	203	779	127	169	120	142	89	300	0
Queue Length 95th (ft)	111	473	63	#331	#1136	271	240	181	209	118	385	60
Internal Link Dist (ft)		1118			496			563			1338	
Turn Bay Length (ft)	650		425	340						350		350
Base Capacity (vph)	338	1492	624	894	2315	817	490	515	1193	950	515	571
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.45	0.83	0.36	0.52	0.98	0.46	0.37	0.26	0.33	0.22	0.62	0.32

Queues

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	77	^	. 1	ካካ	† ††	1	٦	+	77	ሻሻ	1	1
Volume (vph)	145	1170	215	445	2145	355	170	125	370	200	305	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	1.00	1.00	0.88	0.97	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	1770	1863	2787	3433	1863	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	1770	1863	2787	3433	1863	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	153	1232	226	468	2258	374	179	132	389	211	321	184
RTOR Reduction (vph)	0	0	160	0	0	96	0	0	0	0	0	144
Lane Group Flow (vph)	153	1232	66	468	2258	278	179	132	389	211	321	40
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	pt+ov	Split	NA	Perm
Protected Phases	1	6	1 Gim	5	2	1 onn	4	4	45	3	3	(on
Permitted Phases		U	6	U	-	2	-	-		0		3
Actuated Green, G (s)	12.8	41.0	41.0	37.0	65.2	65.2	19.2	19.2	62.2	29.8	29.8	29.8
Effective Green, g (s)	14.8	44.0	44.0	39.0	68.2	68.2	22.2	22.2	65.2	32.8	32.8	32.8
Actuated g/C Ratio	0.10	0.29	0.29	0.26	0.45	0.45	0.15	0.15	0.43	0.22	0.22	0.22
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	6.0	6.0	0.10	6.0	6.0	6.0
Vehicle Extension (s)	2.5	5.0	5.0	5.0	5.0	5.0	2.5	2.5		2.5	2.5	2.5
Lane Grp Cap (vph)	339	1492	464	893	2312	720	262	276	1211	751	407	346
v/s Ratio Prot	0.04	0.24	404	c0.14	c0.44	120	c0.10	0.07	0.14	0.06	c0.17	040
v/s Ratio Perm	0.04	0.24	0.04	60.14	00.44	0.18	00.10	0.07	0.14	0.00	00.17	0.03
v/c Ratio	0.45	0.83	0.14	0.52	0.98	0.39	0.68	0.48	0.32	0.28	0.79	0.12
Uniform Delay, d1	63.8	49.4	39.1	47.5	40.1	27.1	60.6	58.6	27.9	48.8	55.3	47.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.7	5.4	0.6	1.1	14.0	1.6	6.6	1.0	0.1	0.1	9.4	0.1
Delay (s)	64.5	54.8	39.7	48.6	54.1	28.6	67.1	59.5	28.0	48.9	64.8	47.1
Level of Service	E	D	D	-10.0 D	D	C	E	E	C	-+0.0 D	E	D
Approach Delay (s)	-	53.6	5	2	50.2	U	-	43.9	Ű	U	55.6	
Approach LOS		D			D			-10.0 D			E	
Intersection Summary												
HCM Average Control Delay			51.0	Ĥ	CM Leve	of Servic	e		D	_		
HCM Volume to Capacity ratio			0.84									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	1		84.4%			of Service			E			
Analysis Period (min)			15	10					-			
c Critical Lane Group			10									

HCM Signalized Intersection Capacity Analysis 180⁻ Hampton Park/Brightseat Rd & MD 214 Wes

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

					mp to WB 214	
	-+	*	+	1		
Lane Group	EBT	WBL	WBT	SBR		
Lane Group Flow (vph)	1137	995	2553	353	1	2
v/c Ratio	0.57	0.86	0.67	0.60		
Control Delay	45.8	64.3	12.8	65.4		
Queue Delay	0.0	0.0	0.0	0.0		
Total Delay	45.8	64.3	12.8	65.4		
Queue Length 50th (ft)	381	570	495	208		
Queue Length 95th (ft)	497	608	623	260		
Internal Link Dist (ft)	215		315			
Turn Bay Length (ft)		325				
Base Capacity (vph)	1993	1430	3842	593		
Starvation Cap Reductn	0	0	0	0		
Spillback Cap Reductn	0	0	0	0		
Storage Cap Reductn	0	0	0	0		
Reduced v/c Ratio	0.57	0.70	0.66	0.60		

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	1	-	7	1	+	*	1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	_	***		ካካ	^							17
Volume (vph)	0	1080	0	945	2425	0	0	0	0	0	0	335
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	10,00	4.0		4.0	4.0	10.0.0						4.0
Lane Util. Factor		0.91		0.97	0.91							0.88
Frt		1.00		1.00	1.00							0.85
Flt Protected		1.00		0.95	1.00							1.00
Satd. Flow (prot)		5085		3433	5085							2787
Flt Permitted		1.00		0.95	1.00							1.00
Satd. Flow (perm)		5085		3433	5085							2787
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0.55	1137	0.55	995	2553	0.55	0.55	0.55	0.55	0.55	0.55	353
RTOR Reduction (vph)	0	0	0	0	2000	0	0	0	0	0	0	14
Lane Group Flow (vph)	0	1137	0	995	2553	Ö	0	0	0	0	0	339
Turn Type	0	NA	0	Prot	NA	v	U	U	U	V		custom
Protected Phases		4		3	8							cusion
Permitted Phases		4		5	0							e
Actuated Green, G (s)		70.3		60.4	134.7							37.3
Effective Green, g (s)		70.3		60.4	134.7							37.3
Actuated g/C Ratio		0.39		0.34	0.75							0.21
Clearance Time (s)		4.0		4.0	4.0							4.0
Vehicle Extension (s)		3.0		3.0	3.0							3.0
		1986	-	1152	3805	_						578
Lane Grp Cap (vph)												5/6
v/s Ratio Prot		0.22		c0.29	c0.50							-0.40
v/s Ratio Perm		0.57		0.00	0.07							c0.12
v/c Ratio		0.57		0.86	0.67							0.59
Uniform Delay, d1		43.1		55.9	11.4							64.4
Progression Factor		1.00		1.00	1.00							1.00
Incremental Delay, d2		0.4		6.9	0.5							4.3
Delay (s)		43.5		62.9	11.9							68.7
Level of Service		D		E	В							E
Approach Delay (s)		43.5			26.2			0.0			68.7	
Approach LOS		D			С			A			E	
Intersection Summary												
HCM Average Control Delay			33.1	н	CM Level	of Service	9		С			
HCM Volume to Capacity ratio			0.71									
Actuated Cycle Length (s)			180.0		um of los				8.0			
Intersection Capacity Utilization			74.3%	IC	U Level	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

240: I-495 NB to W	B off-ra	mp & I	ID 214	7/24/2012
	-+	+	1	
Lane Group	EBT	WBT	NBL	
Lane Group Flow (vph)	1347	3232	316	2
v/c Ratio	0.36	0.87	0.52	
Control Delay	4.7	12.2	37.0	
Queue Delay	0.0	0.0	0.0	
Total Delay	4.7	12.2	37.0	
Queue Length 50th (ft)	84	407	85	
Queue Length 95th (ft)	102	489	126	
Internal Link Dist (ft)	369	230	179	
Turn Bay Length (ft)				
Base Capacity (vph)	3729	3729	610	
Starvation Cap Reductn	0	0	0	
Spillback Cap Reductn	0	0	0	
Storage Cap Reductn	0	0	0	
Reduced v/c Ratio	0.36	0.87	0.52	

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	+	7	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	***			***	ካካ			
Volume (vph)	1280	0	0	3070	300	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0			4.0	4.0			
Lane Util. Factor	0.91			0.91	0.97			
Frt	1.00			1.00	1.00			
Flt Protected	1.00			1.00	0.95			
Satd. Flow (prot)	5085			5085	3433			
Flt Permitted	1.00			1.00	0.95			
Satd. Flow (perm)	5085			5085	3433			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	1347	0	0	3232	316	0		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	1347	0	0	3232	316	0		
Turn Type	NA			NA	NA			
Protected Phases	4			8	2			
Permitted Phases				, in the second se	-			
Actuated Green, G (s)	66.0			66.0	16.0			
Effective Green, g (s)	66.0			66.0	16.0			
Actuated g/C Ratio	0.73			0.73	0.18			
Clearance Time (s)	4.0			4.0	4.0			
Vehicle Extension (s)	3.0			3.0	3.0			
Lane Grp Cap (vph)	3729			3729	610			
v/s Ratio Prot	0.26			c0.64	c0.09			
v/s Ratio Perm								
v/c Ratio	0.36			0.87	0.52			
Uniform Delay, d1	4.4			8.8	33.5			
Progression Factor	1.00			1.00	1.00			
Incremental Delay, d2	0.1			2.3	3.1			
Delay (s)	4.4			11.1	36.6			
Level of Service	A			В	D			
Approach Delay (s)	4.4			11.1	36.6			
Approach LOS	А			В	D			
Intersection Summary								
HCM Average Control Dela			10.9	н	CM Level	of Service	В	
HCM Volume to Capacity ra	atio		0.80					
Actuated Cycle Length (s)			90.0	S	um of lost	time (s)	8.0	
Intersection Capacity Utiliza	ation		74.5%	IC	U Level o	of Service	D	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 240: I-495 NB to WB off-ramp & MD 214

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	+	1	*	1	1	
Lane Group	EBL	EBT	WBL	WBR	NBT	NBR	
Lane Group Flow (vph)	26	342	121	37	1447	422	2
v/c Ratio	0.15	0.44	0.41	0.07	0.61	0.38	
Control Delay	17.2	13.4	30.9	9.0	11.5	1.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.2	13.4	30.9	9.0	11.5	1.3	
Queue Length 50th (ft)	0	15	40	0	120	0	
Queue Length 95th (ft)	24	49	107	23	218	18	
Internal Link Dist (ft)		672			788		
Turn Bay Length (ft)							
Base Capacity (vph)	174	1480	690	954	3589	1311	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.15	0.23	0.18	0.04	0.40	0.32	

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	1	~	1	+		1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	CDL	110 EDT	EDN	VVDL	VVDI	VVDR	INDL		NDK	ODL	ODI	ODF
	25	120	205	115	0	35	0	1060	715	0	0	(
Volume (vph) Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	4.0	4.0	1900	4.0	1900	4.0	1900	4.0	4.0	1900	1900	1900
Total Lost time (s) Lane Util. Factor	1.00	0.91		4.0		1.00		0.86	0.86			
Frt	1.00			1.00		N. 7. N.		0.86				
		0.91				0.85			0.85			
Fit Protected	0.95	1.00		0.95		1.00		1.00	1.00			
Satd. Flow (prot)	1770	4604		1770		1583		4641	1362			
Flt Permitted	0.95	1.00		0.95		1.00		1.00	1.00			
Satd. Flow (perm)	1770	4604		1770	-	1583		4641	1362			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	26	126	216	121	0	37	0	1116	753	0	0	C
RTOR Reduction (vph)	25	180	0	0	0	26	0	51	149	0	0	0
Lane Group Flow (vph)	1	162	0	121	0	11	0	1396	273	0	0	0
Turn Type	Prot	NA		Prot		custom		NA	pm+ov			
Protected Phases	7	4		3				2	3			
Permitted Phases						8			2			
Actuated Green, G (s)	1.6	10.7		10.4		19.5		31.4	41.8			
Effective Green, g (s)	1.6	10.7		10.4		19.5		31.4	41.8			
Actuated g/C Ratio	0.02	0.17		0.16		0.30		0.49	0.65			
Clearance Time (s)	4.0	4.0		4.0		4.0		4.0	4.0			
Vehicle Extension (s)	3.0	3.0		3.0		3.0		3.0	3.0			
Lane Grp Cap (vph)	44	764		285		479		2259	967			
v/s Ratio Prot	0.00	c0.04		c0.07				c0.30	c0.05			
v/s Ratio Perm						0.01			0.16			
v/c Ratio	0.01	0.21		0.42		0.02		0.62	0.28			
Uniform Delay, d1	30.7	23.3		24.4		15.8		12.1	4.9			
Progression Factor	1.00	1.00		1.00		1.00		1.00	1.00			
Incremental Delay, d2	0.1	0.1		1.0		0.0		0.5	0.2			
Delay (s)	30.8	23.4		25.4		15.8		12.7	5.1			
Level of Service	C	C		C		B		B	A			
Approach Delay (s)	Ű	23.9		Ŭ	23.1	0		10.9	-		0.0	
Approach LOS		20.5 C			C			B			A	
				_					_			_
Intersection Summary HCM Average Control Delay		_	13.7	Ĥ	CMLovo	l of Service	-		В			
HCM Volume to Capacity ratio			0.47	n,	CIVI Leve	I OI GEIVICE			D			
Actuated Cycle Length (s)			64.5	c.	im of los	t time (s)			8.0			
Intersection Capacity Utilization			49.1%						8.0 A			
			49.1%	IC.	O Level	of Service			A			
Analysis Period (min) c Critical Lane Group			15									

HCM Signalized Intersection Capacity Analysis

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

		5-			4	4	
	1	+	1	Ť	ŧ	-	
Lane Group	WBL	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	42	1121	5	105	163	326	
v/c Ratio	0.06	0.52	0.01	0.16	0.13	0.48	
Control Delay	9.5	7.7	11.0	11.7	11.0	9.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	9.5	7.7	11.0	11.7	11.0	9.0	
Queue Length 50th (ft)	6	45	1	17	13	27	
Queue Length 95th (ft)	24	100	7	54	38	100	
Internal Link Dist (ft)		887		758	736		
Turn Bay Length (ft)						150	
Base Capacity (vph)	1286	3521	1028	1584	3008	1370	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.32	0.00	0.07	0.05	0.24	

Queues 270: Lottsford Road & Harry S. Truman Drive

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations				٦	***		۲	+			† †	1
Volume (vph)	0	0	0	40	530	535	5	100	0	0	155	310
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				5.0	5.0	10.0.0	5.0	5.0			5.0	5.0
Lane Util. Factor				1.00	0.91		1.00	1.00			0.95	1.00
Frt				1.00	0.92		1.00	1.00			1.00	0.85
Fit Protected				0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)				1770	4702		1770	1863			3539	1583
Flt Permitted				0.95	1.00		0.65	1.00			1.00	1.00
Satd. Flow (perm)				1770	4702		1208	1863			3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)			0.95	42	558	563	0.95	105	0.95	0.95	163	326
	0	0	0	42	218			0	0	0	105	105
RTOR Reduction (vph)	0	0	0	42	903	0	0 5	-	0	0	-	
Lane Group Flow (vph)	0	0	0			0		105	0	0	163	221
Turn Type				Split	NA		Perm	NA			NA	Perm
Protected Phases				3	3			4			2	
Permitted Phases							4					2
Actuated Green, G (s)				18.6	18.6		16.3	16.3			16.3	16.3
Effective Green, g (s)				18.6	18.6		16.3	16.3			16.3	16.3
Actuated g/C Ratio				0.41	0.41		0.36	0.36			0.36	0.36
Clearance Time (s)				5.0	5.0		5.0	5.0			5.0	5.0
Vehicle Extension (s)				3.0	3.0		3.0	3.0			6.0	6.0
Lane Grp Cap (vph)				733	1948		439	676			1285	575
v/s Ratio Prot				0.02	c0.19			0.06			0.05	
v/s Ratio Perm							0.00					c0.14
v/c Ratio				0.06	0.46		0.01	0.16			0.13	0.38
Uniform Delay, d1				7.9	9.5		9.1	9.7			9.5	10.6
Progression Factor				1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2				0.0	0.2		0.0	0.1			0.1	1.2
Delay (s)				7.9	9.7		9.2	9.8			9.7	11.8
Level of Service				А	А		A	А			A	B
Approach Delay (s)		0.0			9.6			9.7			11.1	
Approach LOS		А			А			А			В	
Intersection Summary												- 1
HCM Average Control Delay			10.0	H	CM Level	of Servic	e		В			
HCM Volume to Capacity ratio			0.43									
Actuated Cycle Length (s)			44.9	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization			58.1%	IC	U Level	of Service)		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 270: Lottsford Road & Harry S. Truman Drive

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	1	+	1	1	4	÷.	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	271	755	187	482	311	495	58	558	247	
v/c Ratio	0.76	0.69	0.62	0.52	0.97	0.29	0.51	0.82	0.31	
Control Delay	58.1	43.6	54.1	44.1	94.5	29.9	71.8	53.5	5.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.1	43.6	54.1	44.1	94.5	29.9	71.8	53.5	5.4	
Queue Length 50th (ft)	224	195	159	131	~247	101	44	212	20	
Queue Length 95th (ft)	#402	270	254	172	#482	147	95	303	78	
Internal Link Dist (ft)		719		1095		560		666		
Turn Bay Length (ft)			300		500		200			
Base Capacity (vph)	391	1204	391	1204	319	1708	137	780	830	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.69	0.63	0.48	0.40	0.97	0.29	0.42	0.72	0.30	

Queues

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	۲	414		7	477		۲	***		۲	41	1
Volume (vph)	515	330	130	355	240	40	295	410	60	55	380	385
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	10.0.0	4.0	6.0		4.0	6.0	6.0
Lane Util. Factor	0.86	0.86		0.86	0.86		1.00	0.91		1.00	0.91	0.91
Frt	1.00	0.97		1.00	0.99		1.00	0.98		1.00	0.96	0.85
Fit Protected	0.95	0.98		0.95	0.98		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1522	4593		1522	4653		1770	4988		1770	3246	1441
Flt Permitted	0.95	0.98		0.95	0.98		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1522	4593		1522	4653		1770	4988		1770	3246	1441
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	542	347	137	374	253	42	311	432	63	58	400	405
RTOR Reduction (vph)	0	25	0	0	8	0	0	14	0	0	29	111
Lane Group Flow (vph)	271	730	0	187	474	0	311	481	0	58	529	136
Turn Type	Split	NA	U	Split	NA		Prot	NA	v	Prot	NA	pm+ov
Protected Phases	1	1		2	2		7	4		3	8	1
Permitted Phases				2	2			4		5	0	8
Actuated Green, G (s)	27.5	27.5		23.3	23.3		21.2	39.3		6.4	24.5	52.0
Effective Green, g (s)	27.5	27.5		23.3	23.3		21.2	39.3		6.4	24.5	52.0
Actuated g/C Ratio	0.23	0.23		0.20	0.20		0.18	0.33		0.05	0.21	0.44
Clearance Time (s)	6.0	6.0		6.0	6.0		4.0	6.0		4.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.0		2.0	3.0	3.0
	353	1066		299	915			1654		96	671	705
Lane Grp Cap (vph)	c0.18	and the second se			0.10		317			0.03		and the second second
v/s Ratio Prot	CU.18	0.16		c0.12	0.10		c0.18	0.10		0.03	c0.16	0.04
v/s Ratio Perm	0.77	0.00		0.00	0.50		0.00	0.00		0.00	0.70	0.05
v/c Ratio	0.77	0.69		0.63	0.52		0.98	0.29		0.60	0.79	0.19
Uniform Delay, d1	42.5	41.5		43.6	42.6		48.5	29.3		54.8	44.5	20.4
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	9.6	1.8		4.0	0.5		45.1	0.1		7.2	6.1	0.1
Delay (s)	52.1	43.4		47.6	43.1		93.5	29.4		62.0	50.6	20.5
Level of Service	D	D		D	D		F	C		E	D	C
Approach Delay (s)		45.7			44.4			54.1			42.8	
Approach LOS		D			D			D			D	
Intersection Summary										_		- 1
HCM Average Control Dela			46.7	н	CM Leve	of Servic	e		D			
HCM Volume to Capacity n	atio		0.79									
Actuated Cycle Length (s)			118.5	S	um of los	t time (s)			22.0			
Intersection Capacity Utilization	ation		82.6%	IC	ULevel	of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 280: Lottsford Road & Arena Drive

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
Lane Group Flow (vph)	868	263	95	974	163	53	-
v/c Ratio	0.43	0.26	0.36	0.38	0.39	0.13	
Control Delay	14.5	2.7	36.7	6.2	31.1	9.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.5	2.7	36.7	6.2	31.1	9.3	
Queue Length 50th (ft)	141	0	39	94	63	0	
Queue Length 95th (ft)	234	41	96	156	139	29	
Internal Link Dist (ft)	494			472	436		
Turn Bay Length (ft)		150	350				
Base Capacity (vph)	2221	1091	414	2877	636	603	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.39	0.24	0.23	0.34	0.26	0.09	

Queues . . . Del 14/00 200. 04

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	×	2	-	×	3	-		
Movement	SET	SER	NWL	NWT	NEL	NER		
Lane Configurations	11	1	٦	**	۲	1		
Volume (vph)	825	250	90	925	155	50		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.5	5.5	5.0	5.5	5.0	5.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	1770	3539	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	1770	3539	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	868	263	95	974	163	53		
RTOR Reduction (vph)	000	127	0	0	0	45		
Lane Group Flow (vph)	868	136	95	974	163	8		
Turn Type	NA	Perm	Prot	NA	NA	custom		
Protected Phases	6	1 enn	5	2	N/A	custom		
Permitted Phases	0	6	0	2	8	8		
Actuated Green, G (s)	36.1	36.1	7.1	48.2	11.2	11.2		
Effective Green, g (s)	36.1	36.1	7.1	48.2	11.2	11.2		
Actuated g/C Ratio	0.52	0.52	0.10	0.69	0.16	0.16		
Clearance Time (s)	5.5	5.5	5.0	5.5	5.0	5.0		
Vehicle Extension (s)	6.0	6.0	3.0	6.0	6.0	6.0		
Lane Grp Cap (vph)	1828	818	180	2440	284	254		
v/s Ratio Prot	c0.25	010	0.05	c0.28	204	204		
v/s Ratio Perm	00.20	0.09	0.00	00.20	c0.09	0.01		
v/c Ratio	0.47	0.03	0.53	0.40	0.57	0.03		
Uniform Delay, d1	10.8	8.9	29.8	4.6	27.1	24.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.6	0.3	2.8	0.3	5.5	0.2		
Delay (s)	11.4	9.2	32.6	5.0	32.6	24.9		
Level of Service	B	A	C	A	02.0 C	C		
Approach Delay (s)	10.9	~	0	7.4	30.7	U		
Approach LOS	10.5 B			A.4	00.7 C			
2 m 1 m 1 m 1 m 1	U			0	U			
Intersection Summary					_			
HCM Average Control Dela			11.1	н	CM Leve	el of Service	В	
HCM Volume to Capacity ra	atio		0.51					
Actuated Cycle Length (s)			69.9			st time (s)	16.0	
Intersection Capacity Utiliza	ation		49.3%	IC	U Level	of Service	A	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 290: Shoppers Way & Arena Drive

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

Queues

	1	*	1	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBT	
Lane Group Flow (vph)	95	116	1311	105	374	
v/c Ratio	0.44	0.42	0.92	0.09	0.30	
Control Delay	41.3	14.8	20.8	1.6	3.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.3	14.8	20.8	1.6	3.9	
Queue Length 50th (ft)	48	8	394	4	44	
Queue Length 95th (ft)	94	54	#974	17	90	
Internal Link Dist (ft)	536		382		427	
Turn Bay Length (ft)				100		
Base Capacity (vph)	346	390	1518	1300	1306	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.30	0.86	0.08	0.29	
Intersection Summary	-					

Queue shown is maximum after two cycles.

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

	1	*	t	1	4	1		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	1	4	1	001	*		
Volume (vph)	90	110	1245	100	10	345		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.5	4.5	4.5	4.5	1000	4.5		
Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		
Frt	1.00	0.85	1.00	0.85		1.00		
Fit Protected	0.95	1.00	1.00	1.00		1.00		
Satd. Flow (prot)	1770	1583	1863	1583		1860		
Flt Permitted	0.95	1.00	1.00	1.00		0.86		
Satd. Flow (perm)	1770	1583	1863	1583		1603		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	95	116	1311	105	11	363		
RTOR Reduction (vph)	0	88	0	14	0	0		
Lane Group Flow (vph)	95	28	1311	91	Ő	374		
Turn Type	NA	Prot	NA	Perm	Perm	NA		
Protected Phases	3	3	6	1 GIII	1 Cilli	2		
Permitted Phases	5	5	0	6	2	2		
Actuated Green, G (s)	9.7	9.7	61.7	61.7	2	61.7		
Effective Green, g (s)	9.7	9.7	61.7	61.7		61.7		
Actuated g/C Ratio	0.12	0.12	0.77	0.77		0.77		
Clearance Time (s)	4.5	4.5	4.5	4.5		4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		
Lane Grp Cap (vph)	214	191	1430	1215		1230		
v/s Ratio Prot	c0.05	0.02	c0.70	1215		1230		
v/s Ratio Perm	0.05	0.02	00.70	0.06		0.23		
v/c Ratio	0.44	0.15	0.92	0.08		0.23		
Uniform Delay, d1	32.8	31.6	7.3	2.3		2.8		
Progression Factor	1.00	1.00	1.00	1.00		1.00		
Incremental Delay, d2	1.5	0.4	9.5	0.0		0.1		
Delay (s)	34.3	32.0	16.8	2.3		3.0		
Level of Service	04.0 C	02.0 C	B	A		A.		
Approach Delay (s)	33.0	U	15.7	~		3.0		
Approach LOS	00.0 C		10.7 B			A.		
Intersection Summary			-	_		,,		
HCM Average Control Dela	V		15.2	Ĥ	CM Level	of Service	В	
HCM Volume to Capacity ra			0.85		OW LOVE	OI OOI VICO	U	
Actuated Cycle Length (s)	100		80.4	C	um of lost	time (s)	9.0	
Intersection Capacity Utiliza	ation		79.8%			of Service	5.0 D	
Analysis Period (min)			19.0%	IC	o Level C	of delvice	D	

HCM Signalized Intersection Capacity Analysis 300: Addison Rd. & Wilburn Dr

2035_AM_No Build 7:00 am 5/3/2012 2035_AM_No Build CJD

Queues 10 0

	-	+	*	+	۲	1	*	
Lane Group	EBL	EBT	WBL	WBT	WBR	NET	SWT	
Lane Group Flow (vph)	316	1537	121	637	121	911	963	
v/c Ratio	0.77	0.80	0.46	0.67	0.22	0.63	0.90	
Control Delay	31.3	30.7	19.2	36.7	6,3	22.8	37.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.3	30.7	19.2	36.7	6.3	22.8	37.5	
Queue Length 50th (ft)	120	313	37	194	0	222	283	
Queue Length 95th (ft)	#232	373	67	256	41	288	#418	
Internal Link Dist (ft)		460		823		251	355	
Turn Bay Length (ft)	175		330					
Base Capacity (vph)	429	1996	262	952	560	1517	1122	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.74	0.77	0.46	0.67	0.22	0.60	0.86	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	-	-	7	F	+	٤	3	1	1	6	*	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	1	**		۲	† †	1		414			412	_
Volume (vph)	300	1420	40	115	605	115	15	755	95	80	740	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		-1.0	6.0	3.0		3.0			3.0	
Lane Util. Factor	1.00	0.91		1.00	0.95	1.00		0.95			0.95	
Frt	1.00	1.00		1.00	1.00	0.85		0.98			0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)	1770	5064		1770	3539	1583		3478			3469	
Flt Permitted	0.19	1.00		0.15	1.00	1.00		0.93			0.69	
Satd. Flow (perm)	357	5064		288	3539	1583		3235			2391	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	316	1495	42	121	637	121	16	795	100	84	779	100
RTOR Reduction (vph)	0	3	0	0	0	85	0	9	0	0	9	0
Lane Group Flow (vph)	316	1534	0	121	637	36	Ő	902	0	0	954	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6	1 onn	1 onn	4		1 Gim	8	
Permitted Phases	2	2		6		6	4	7		8	U	
Actuated Green, G (s)	39.9	31.9		24.9	20.9	20.9		40.1		v	40.1	
Effective Green, g (s)	40.9	36.9		34.9	25.9	28.9		43.1			43.1	
Actuated g/C Ratio	0.42	0.38		0.36	0.27	0.30		0.44			0.44	
Clearance Time (s)	4.0	11.0		4.0	11.0	11.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	384	1926		241	945	472	_	1437			1062	-
v/s Ratio Prot	c0.14	c0.30		0.05	0.18	112		1407			1002	
v/s Ratio Perm	0.21	00.00		0.13	0,10	0.02		0.28			c0.40	
v/c Ratio	0.82	0.80		0.50	0.67	0.08		0.63			0.90	
Uniform Delay, d1	21.3	26.7		22.1	31.8	24.5		20.8			24.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	13.3	2.4		1.6	1.9	0.1		0.9			10.1	
Delay (s)	34.6	29.1		23.7	33.7	24.5		21.6			35.0	
Level of Service	C	C		C	C	C		C			D	
Approach Delay (s)	Ű	30.0		Ŭ.	31.1			21.6			35.0	
Approach LOS		C			C			C			D	
Intersection Summary												- 1
HCM Average Control Dela	ay		29.6	H	CM Level	of Service	e		С			
HCM Volume to Capacity n	atio		0.82									
Actuated Cycle Length (s)			97.0	S	um of los	t time (s)			6.0			
Intersection Capacity Utilization	ation		99.8%	IC	U Level	of Service			F			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 10: Southern Ave NE & MD 214 West

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

HCM Unsignalized	Intersection Capacity Analysis
20: Davey Street &	MD 214 West

	-	-	7	*	+	۲	3	1	1	6	*	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	٦	**		٦	*††	_		र्भ	1	_	4	_
Volume (veh/h)	5	1585	5	140	805	5	25	5	140	5	5	5
Sign Control		Free			Free		20	Stop	4.55		Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	5	1668	5	147	847	5	26	5	147	5	5	E
Pedestrians						2	1919					
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)		903										
pX, platoon unblocked				0.74			0.74	0.74	0.74	0.74	0.74	
vC, conflicting volume	853			1674			2267	2829	559	1861	2829	285
vC1, stage 1 conf vol								Long			2020	
vC2, stage 2 conf vol												
vCu, unblocked vol	853			662			1467	2231	0	916	2231	285
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)							1.0	0.0	0.0	1.0	0.0	0.0
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			78			42	78	82	94	78	99
cM capacity (veh/h)	782			680			45	24	798	95	24	712
Direction, Lane #	EB 1	EB 2	EB 3	EB 4	WB 1	WB 2	WB 3	WB 4	NE 1	NE 2	SW 1	1.4
Volume Total	5	667	667	339	147	339	339	175	32	147	16	-
Volume Left	5	007	007	0	147	0	0	0	26	0	5	
Volume Right	0	0	0	5	0	0	0	5	0	147	5	
cSH	782	1700	1700	1700	680	1700	1700	1700	40	798	56	
Volume to Capacity	0.01	0.39	0.39	0.20	0.22	0.20	0.20	0.10	0.80	0.18	0.28	
Queue Length 95th (ft)	1	0.55	0.55	0.20	21	0.20	0.20	0.10	74	17	24	
Control Delay (s)	9.6	0.0	0.0	0.0	11.8	0.0	0.0	0.0	236.9	10.5	92.1	
Lane LOS	3.0 A	0.0	0.0	0.0	B	0.0	0.0	0.0	230.5 F	B	F	
Approach Delay (s)	0.0				1.7				50.5	D	92.1	
Approach LOS	0.0				1.7				50.5 F		F	
Intersection Summary												
Average Delay			4.3			1.0						
Intersection Capacity Utilization	1		53.7%	10	CU Level	of Service			A			
Analysis Period (min)			15									

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	1	1	1	4	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	105	2163	426	284	1211	274	284	221	137	636	
v/c Ratio	0.37	1.23	0.67	0.66	0.50	0.59	0.59	0.54	0.35	0.79	
Control Delay	21.6	148.9	31.0	59.3	26.6	65.6	65.5	11.7	50.7	54.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.6	148.9	31.0	59.3	26.6	65.6	65.5	11.7	50.7	54.1	
Queue Length 50th (ft)	44	~952	218	243	231	131	138	0	115	271	
Queue Length 95th (ft)	89	#1042	347	#431	339	174	183	77	169	322	
nternal Link Dist (ft)		307			349		726			986	
Furn Bay Length (ft)	200		200	175		350		575	200		
Base Capacity (vph)	287	1763	634	433	2406	858	885	562	450	914	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	1.23	0.67	0.66	0.50	0.32	0.32	0.39	0.30	0.70	

Queues 90: Addison Rd & MD 214 West

Intersection Summary

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٢	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	۲	^	1	٢	4 1		ካካ	† †	1	7	₫ ₽	-
Volume (vph)	100	2055	405	270	1020	130	260	270	210	130	370	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	6.0	3.0	3.0	10.0.0	3.0	3.0	3.0	3.0	3.0	
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91		0.97	0.95	1.00	1.00	0.95	
Frt	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85	1.00	0.94	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	5085	1583	1770	4999		3433	3539	1583	1770	3333	
Flt Permitted	0.21	1.00	1.00	0.07	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	390	5085	1583	138	4999		3433	3539	1583	1770	3333	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	105	2163	426	284	1074	137	274	284	221	137	389	247
RTOR Reduction (vph)	0	0	116	0	8	0	0	0	191	0	70	0
Lane Group Flow (vph)	105	2163	310	284	1203	0	274	284	30	137	566	C
Turn Type	pm+pt	NA	Perm	pm+pt	NA	0	Split	NA	Perm	Split	NA	0
Protected Phases	1 1	6	rem	5	2		3	3	1 GIIII	4	4	
Permitted Phases	6	U	6	2	2		0	5	3	4	4	
Actuated Green, G (s)	57.4	48.0	48.0	83.4	68.0		17.4	17.4	17.4	30.2	30.2	
Effective Green, g (s)	63.4	52.0	49.0	86.4	72.0		20.4	20.4	20.4	33.2	33.2	
Actuated g/C Ratio	0.42	0.35	0.33	0.58	0.48		0.14	0.14	0.14	0.22	0.22	
Clearance Time (s)	6.0	7.0	7.0	6.0	7.0		6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)	2.5	5.0	5.0	2.5	5.0		2.5	2.5	2.5	2.5	2.5	
Lane Grp Cap (vph)	279	1763	517	432	2400		467	481	215	392	738	_
v/s Ratio Prot	0.03	c0.43	517	c0.14	0.24		0.08	c0.08	215	0.08	c0.17	
v/s Ratio Perm	0.03	60.45	0.20	0.24	0.24		0.00	0.00	0.02	0.00	CO. 17	
v/c Ratio	0.13	1.23	0.60	0.24	0.50		0.59	0.59	0.02	0.35	0.77	
Uniform Delay, d1	26.6	49.0	42.3	39.9	26.7		60.8	60.9	57.1	49.3	54.8	
and the second se	1.00	1.00	1.00	1.45	0.91		1.00	1.00	1.00	1.00	1.00	
Progression Factor Incremental Delay, d2	0.6	107.3	5.1	3.1	0.91		1.6	1.6	0.2	0.4	4.6	
Delay (s)	27.2	156.3	47.3	60.9	25.1		62.4	62.5	57.3	49.7	59.4	
Level of Service	21.2 C	100.5 F	47.5 D	60.9 E	25.1 C		62.4 E	62.5 E	57.5 E	49.7 D	59.4 E	
	C	134.1	U	E	31.9		E		E	U	57.6	
Approach Delay (s) Approach LOS		134.1 F			31.9 C			61.0 E			57.6 E	
2 mar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F			C			E			E	_
Intersection Summary		_										
HCM Average Control Dela			87.3	н	CIM Leve	of Service	9		F			
HCM Volume to Capacity ra	olto		0.89									
Actuated Cycle Length (s)			150.0		um of los				12.0			
Intersection Capacity Utiliza	ation		93.2%	IC	U Level	of Service			F			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 90: Addison Rd. & MD 214 West

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

HCM Unsignalized Intersection Capacity Analysis 95: Addison Metro Station & MD 214 West

	+	7	1	+	1	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	***	-	۲	† ††	Y	_				
Volume (veh/h)	2130	85	120	1295	85	165				
Sign Control	Free			Free	Stop					
Grade	0%			0%	0%					
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95				
Hourly flow rate (vph)	2242	89	126	1363	89	174				
Pedestrians		20			40					
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)										
Median type	None			None						
Median storage veh)										
Upstream signal (ft)	429									
pX, platoon unblocked			0.66		0.66	0.66				
vC, conflicting volume			2332		2994	792				
vC1, stage 1 conf vol										
vC2, stage 2 conf vol										
vCu, unblocked vol			1211		2215	0				
tC, single (s)			4.1		6.8	6.9				
tC, 2 stage (s)										
tF (s)			2.2		3.5	3.3				
p0 queue free %			66		0	76				
cM capacity (veh/h)			377		16	715				
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB2	WB 3	WB4	NB 1		
Volume Total	897	897	538	126	454	454	454	263		
Volume Left	0	0	0	126	0	0	0	89		
Volume Right	0	0	89	0	0	0	0	174		
cSH	1700	1700	1700	377	1700	1700	1700	46		
Volume to Capacity	0.53	0.53	0.32	0.34	0.27	0.27	0.27	5.73		
Queue Length 95th (ft)	0	0	0	36	0	0	0	Err		
Control Delay (s)	0.0	0.0	0.0	19.3	0.0	0.0	0.0	Err		
Lane LOS				С				F		
Approach Delay (s)	0.0			1.6				Еrт		
Approach LOS								F		
Intersection Summary										
Average Delay			644.9							
Intersection Capacity Utiliza	ation		74.5%	IC	U Level	of Service			D	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

HCM Unsignalized Intersection Capacity Analysis 100⁻ Cabin Branch Rd/Soper Ln & MD 214 West

	٢	+	7	1	+	*	1	t	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	۲	4 4 1		٦	***	_		4			4	
Volume (veh/h)	5	2270	20	50	1400	5	5	0	100	30	5	10
Sign Control		Free			Free		-	Stop	04.2		Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	5	2389	21	53	1474	5	5	0	105	32	5	11
Pedestrians	-		-				-					
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		None			Hono							
Upstream signal (ft)					941							
pX, platoon unblocked	0.93				041		0.93	0.93		0.93	0.93	0.93
vC, conflicting volume	1479			2411			3020	3995	807	2494	4003	494
vC1, stage 1 conf vol	1479			24(1			0020	0000	007	2101	4000	101
vC2, stage 2 conf vol												
vCu, unblocked vol	1243			2411			2905	3955	807	2337	3964	181
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)	40			4.1			1.5	0.0	0.0	1.0	0.0	0.0
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			73			0.0	100	68	0	4.0	99
cM capacity (veh/h)	516			195			0	2	324	10	2	770
											2	110
Direction, Lane #	EB 1	EB 2	EB 3	EB 4	WB1	WB 2	WB 3	WB 4	NB 1	SB 1	-	_
Volume Total	5	956	956	499	53	589	589	300	111	47		
Volume Left	5	0	0	0	53	0	0	0	5	32		
Volume Right	0	0	0	21	0	0	0	5	105	11		
cSH	516	1700	1700	1700	195	1700	1700	1700	0	8		
Volume to Capacity	0.01	0.56	0.56	0.29	0.27	0.35	0.35	0.18	Err	5.93		
Queue Length 95th (ft)	1	0	0	0	26	0	0	0	Err	Err		
Control Delay (s)	12.1	0.0	0.0	0.0	30.2	0.0	0.0	0.0	Err	Err		
Lane LOS	В				D				F	F		
Approach Delay (s) Approach LOS	0.0				1.0				Err F	Err F		
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utiliza	tion		60.2%	10	U Level	of Service	1		В			
Analysis Period (min)			15									

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٢	-	+	1	1	
Lane Group	EBL	EBT	WBT	SBL	SBR	
Lane Group Flow (vph)	95	2521	1569	37	89	
v/c Ratio	0.31	0.56	0.39	0.26	0.42	
Control Delay	5.9	4.6	4.7	68.7	18.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.9	4.6	4.7	68.7	18.0	
Queue Length 50th (ft)	2	105	131	35	0	
Queue Length 95th (ft)	m3	m24	176	72	56	
Internal Link Dist (ft)		861	1511	430		
Turn Bay Length (ft)	225			250		
Base Capacity (vph)	330	4467	4061	425	448	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.56	0.39	0.09	0.20	
Intersection Summary					100 C	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٨	126	+	4	6	1		
		-+		11155				
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	٦	***	***	-	٦	1		
Volume (vph)	90	2395	1455	35	35	85		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.0	3.0	3.0		3.0	3.0		
Lane Util. Factor	1.00	0.91	0.91		1.00	1.00		
Frt	1.00	1.00	1.00		1.00	0.85		
Fit Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1770	5085	5067		1770	1583		
Flt Permitted	0.13	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	248	5085	5067	_	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	95	2521	1532	37	37	89		
RTOR Reduction (vph)	0	0	1	0	0	82		
Lane Group Flow (vph)	95	2521	1568	0	37	7		
Turn Type	pm+pt	NA	NA		NA	Perm		
Protected Phases	1	6	2		8			
Permitted Phases	6					8		
Actuated Green, G (s)	127.8	127.8	116.3		9.2	9.2		
Effective Green, g (s)	129.8	131.8	120.3		12.2	12.2		
Actuated g/C Ratio	0.87	0.88	0.80		0.08	0.08		
Clearance Time (s)	5.0	7.0	7.0		6.0	6.0		
Vehicle Extension (s)	3.0	6.0	6.0		3.0	3.0		
Lane Grp Cap (vph)	301	4468	4064		144	129		
v/s Ratio Prot	0.02	c0.50	0.31		c0.02			
v/s Ratio Perm	0.25					0.00		
v/c Ratio	0.32	0.56	0.39		0.26	0.06		
Uniform Delay, d1	2.4	2.2	4.3		64.6	63.6		
Progression Factor	3.95	1.92	1.00		1.00	1.00		
Incremental Delay, d2	0.2	0.2	0.3		0.9	0.2		
Delay (s)	9.7	4.4	4.5		65.6	63.8		
Level of Service	A	A	A		E	E		
Approach Delay (s)		4.6	4.5		64.3			
Approach LOS		A	A		E			
Intersection Summary								
HCM Average Control Dela	ay		6.3	Ĥ	CM Level	of Service	A	
HCM Volume to Capacity r			0.54					
Actuated Cycle Length (s)	1		150.0	S	um of lost	time (s)	6.0	
Intersection Capacity Utiliz	ation		59.6%			of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 110: MD 214 West & Cindy

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	+	1	+	1	1	1	+	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	32	47	31	26	626	21	490	
v/c Ratio	0.08	0.10	0.07	0.04	0.17	0.04	0.14	
Control Delay	9.9	12.9	7.8	4.6	3.6	4.7	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	9.9	12.9	7.8	4.6	3.6	4.7	3.6	
Queue Length 50th (ft)	2	7	1	2	18	2	14	
Queue Length 95th (ft)	18	28	16	9	34	8	27	
Internal Link Dist (ft)	623		482		695		523	
Turn Bay Length (ft)				150		125		
Base Capacity (vph)	1491	1832	1602	856	4979	746	4999	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.03	0.02	0.03	0.13	0.03	0.10	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	*	1	t	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		۲	4		۲	4 † ‡	_	7	4 † }	
Volume (vph)	10	5	15	45	5	25	25	540	55	20	435	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0		5.0	5.0	1.0.0.0	5.0	5.0		5.0	5.0	
Lane Util, Factor		1.00		1.00	1.00		1.00	0.91		1.00	0.91	
Frt		0.93		1.00	0.87		1.00	0.99		1.00	0.99	
Fit Protected		0.98		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1708		1770	1628		1770	5015		1770	5035	
Flt Permitted		0.87		1.00	1.00		0.46	1.00		0.40	1.00	
Satd. Flow (perm)		1517		1863	1628		863	5015		752	5035	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	11	5	16	47	5	26	26	568	58	21	458	32
RTOR Reduction (vph)	0	14	0	0	23	0	0	11	0	0	7	0
Lane Group Flow (vph)	0	18	0	47	8	Ő	26	615	0	21	483	0
Turn Type	Perm	NA		Perm	NA	v	Perm	NA		Perm	NA	
Protected Phases	1 onin	8		1 Onit	4		1 Gilli	6		1 Ginn	2	
Permitted Phases	8	U		4	-		6	U		2	-	
Actuated Green, G (s)	Ŭ	3.6		3.6	3.6		17.3	17.3		17.3	17.3	
Effective Green, g (s)		3.6		3.6	3.6		17.3	17.3		17.3	17.3	
Actuated g/C Ratio		0.12		0.12	0.12		0.56	0.56		0.56	0.56	
Clearance Time (s)		5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0		3.0	3.0		6.0	6.0		6.0	6.0	
Lane Grp Cap (vph)	_	177	-	217	190	_	483	2808		421	2819	
v/s Ratio Prot				-0	0.00		100	c0.12		1 - 1	0.10	
v/s Ratio Perm		0.01		c0.03	0.00		0.03	00.12		0.03	0.10	
v/c Ratio		0.10		0.22	0.04		0.05	0.22		0.05	0.17	
Uniform Delay, d1		12.2		12.4	12.1		3.1	3.4		3.1	3.3	
Progression Factor		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.3		0.5	0.1		0.1	0.1		0.1	0.1	
Delay (s)		12.5		12.9	12.2		3.2	3.5		3.2	3.4	
Level of Service		В		В	В		A	A		A	A	
Approach Delay (s)		12.5		-	12.6			3.5			3.4	
Approach LOS		В			В			A			A	
Intersection Summary												- 1
HCM Average Control Delay			4.2	H	CM Level	of Servic	е		A	_		
HCM Volume to Capacity ratio			0.22									
Actuated Cycle Length (s)			30.9	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	ı		37.5%			of Service			А			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 130: Garrett Morgan & Ridgefield

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
ane Group Flow (vph)	589	63	116	500	126	316	
/c Ratio	0.30	0.10	0.22	0.17	0.36	0.56	
Control Delay	11.5	4.0	22.7	4.5	23.2	7.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.5	4.0	22.7	4.5	23.2	7.5	
Queue Length 50th (ft)	43	0	15	19	33	0	
Queue Length 95th (ft)	74	19	42	34	86	58	
nternal Link Dist (ft)	667			1365	395		
Furn Bay Length (ft)		100	150				
Base Capacity (vph)	3647	1153	1055	4870	1603	1463	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.05	0.11	0.10	0.08	0.22	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

7/24/2012

	×	2	~	×	3	~		
Movement	SET	SER	NWL	NWT	NEL	NER		
Lane Configurations	***	1	ሻሻ	***	7	1		
Volume (vph)	560	60	110	475	120	300		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Lane Util. Factor	0.91	1.00	0.97	0.91	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Fit Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	5085	1583	3433	5085	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	5085	1583	3433	5085	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	589	63	116	500	126	316		
RTOR Reduction (vph)	0	39	0	0	0	254		
Lane Group Flow (vph)	589	24	116	500	126	62		
Turn Type		custom	Prot	NA	NA	Perm		
Protected Phases			1	6	4			
Permitted Phases	2	2	-			4		
Actuated Green, G (s)	19.1	19.1	5.6	29.7	9.6	9.6		
Effective Green, g (s)	19.1	19.1	5.6	29.7	9.6	9.6		
Actuated g/C Ratio	0.39	0.39	0.11	0.60	0.19	0.19		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	6.0	6.0	3.0	6.0	3.0	3.0		
Lane Grp Cap (vph)	1970	613	390	3063	345	308		
v/s Ratio Prot			c0.03	0.10	c0.07			
v/s Ratio Perm	c0.12	0.02	1000000			0.04		
v/c Ratio	0.30	0.04	0.30	0.16	0.37	0.20		
Uniform Delay, d1	10.5	9.4	20.0	4.3	17.2	16.6		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.2	0.1	0.4	0.1	0.7	0.3		
Delay (s)	10.7	9.5	20.5	4.4	17.9	17.0		
Level of Service	В	А	С	A	В	В		
Approach Delay (s)	10.6			7.4	17.2			
Approach LOS	В			А	В			
Intersection Summary				- ×	_			
HCM Average Control Dela	v		11.2	н	CMLevel	of Service	В	
HCM Volume to Capacity ra			0.32		2.11. 2010	-1	5	
Actuated Cycle Length (s)			49.3	S	um of lost	time (s)	15.0	
Intersection Capacity Utiliza	ation		37.7%			of Service	A	
Analysis Period (min)			15	ic	- LOVOI (001100	А	
c Critical Lane Group			10					

HCM Signalized Intersection Capacity Analysis 140: Morgan Metro Park and Ride & Garrett A Morgan

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٢	-	1	+	1	t	1	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	211	2279	274	1474	162	338	374	295	453	147	
v/c Ratio	0.43	0.84	1.27	0.64	0.35	0.71	0.24	0.49	0.73	0.24	
Control Delay	66.6	35,9	210.4	35.5	62.2	72.7	0.4	61.8	69.5	3.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	66.6	35.9	210.4	35.5	62.2	72.7	0.4	61.8	69.5	3.9	
Queue Length 50th (ft)	107	715	~186	414	89	198	0	145	240	0	
Queue Length 95th (ft)	152	#973	#285	540	127	251	0	186	288	32	
Internal Link Dist (ft)		1283		929		896			1365		
Turn Bay Length (ft)	350		600		350		200	500			
Base Capacity (vph)	487	2703	215	2302	932	969	1583	1116	1150	601	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.43	0.84	1.27	0.64	0.17	0.35	0.24	0.26	0.39	0.24	

Queues 150 Ritchie/Garrett A Morgan & MD 214 West

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻሻ	4 † ‡		ኘካ	4 1		ካካ	41	1	ሻሻ	† †	7
Volume (vph)	200	2010	155	260	1275	125	230	245	355	280	430	140
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	0.97	0.91		0.97	0.91		0.86	0.86	1.00	0.97	0.95	1.00
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00		0.95	0.99	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	5031		3433	5017		3044	3166	1583	3433	3539	1583
Flt Permitted	0.95	1.00		0.95	1.00		0.95	0.99	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	5031		3433	5017		3044	3166	1583	3433	3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	211	2116	163	274	1342	132	242	258	374	295	453	147
RTOR Reduction (vph)	0	3	0	0	5	0	0	0	0	0	0	100
Lane Group Flow (vph)	211	2276	0	274	1469	0	162	338	374	295	453	47
Turn Type	Prot	NA		Prot	NA		Split	NA	Free	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	1100	3	3	1
Permitted Phases					-			_	Free			3
Actuated Green, G (s)	20.7	82.9		8.0	70.2		22.1	22.1	160.0	26.0	26.0	46.7
Effective Green, g (s)	22.7	85.9		10.0	73.2		24.1	24.1	160.0	28.0	28.0	50.7
Actuated g/C Ratio	0.14	0.54		0.06	0.46		0.15	0.15	1.00	0.18	0.18	0.32
Clearance Time (s)	5.0	6.0		5.0	6.0		5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0		2.5	2.5		2.5	2.5	3.0
Lane Grp Cap (vph)	487	2701		215	2295		459	477	1583	601	619	502
v/s Ratio Prot	0.06	c0.45		c0.08	0.29		0.05	c0.11	1000	0.09	c0.13	0.01
v/s Ratio Perm	0.00	00.40		00.00	0.20		0.00	00.11	0.24	0.00	00.10	0.02
v/c Ratio	0.43	0.84		1.27	0.64		0.35	0.71	0.24	0.49	0.73	0.09
Uniform Delay, d1	62.8	31.3		75.0	33.3		61.0	64.6	0.0	59.6	62.4	38.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	3.4		154.6	1.4		0.3	4.4	0.4	0.5	4.2	0.1
Delay (s)	63.4	34.7		229.6	34.7		61.3	69.0	0.4	60.0	66.6	38.5
Level of Service	E	C		F	С		E	E	A	E	E	D
Approach Delay (s)		37.2			65.2		-	38.2		-	59.9	-
Approach LOS		D			E			D			E	
Intersection Summary												- 1
HCM Average Control Delay	_		48.9	Ĥ	CM Leve	of Service	Э		D			
HCM Volume to Capacity ratio			0.83									
Actuated Cycle Length (s)			160.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization			81.7%			of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 150: Ritchie/Garrett A Morgan & MD 214 West

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٢	+	1	+	*	1	1	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	89	2168	116	1205	258	100	232	343	383	153	
v/c Ratio	0.28	0.76	0.57	0.41	0.25	0.29	0.63	0.68	0.74	0.39	
Control Delay	12.2	28.3	39.3	19.0	2.8	63.5	64.8	65.7	67.9	10.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.2	28.3	39.3	19.0	2.8	63.5	64.8	65.7	67.9	10.2	
Queue Length 50th (ft)	28	563	57	224	0	47	103	186	210	0	
Queue Length 95th (ft)	61	775	133	330	47	76	147	236	262	62	
Internal Link Dist (ft)		1835		2003			924		2121		
Turn Bay Length (ft)	300		225		325	350		300		150	
Base Capacity (vph)	325	2865	203	2955	1028	881	896	781	810	520	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.76	0.57	0.41	0.25	0.11	0.26	0.44	0.47	0.29	

Queues 160: Shady Glen Dr/Hill Rd & MD 214 West

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٢	+	7	1	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	**		٦	^	1	ካካ	† 1+		ኘካ	↑ Ъ	1
Volume (vph)	85	1960	100	110	1145	245	95	170	50	440	250	145
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	0.97	0.95		0.86	0.86	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	0.98	1.00
Satd. Flow (prot)	1770	5048		1770	5085	1583	3433	3418		3044	3155	1583
Flt Permitted	0.18	1.00		0.05	1.00	1.00	0.95	1.00		0.95	0.98	1.00
Satd. Flow (perm)	337	5048		87	5085	1583	3433	3418		3044	3155	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	89	2063	105	116	1205	258	100	179	53	463	263	153
RTOR Reduction (vph)	0	3	0	0	0	108	0	22	0	0	0	128
Lane Group Flow (vph)	89	2165	0	116	1205	150	100	210	0	343	383	25
Turn Type	pm+pt	NA	_	pm+pt	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	1	6		5	2	1 onti	3	3		4	4	(on
Permitted Phases	6			2	-	2						4
Actuated Green, G (s)	90.8	82.0		95.0	84.1	84.1	12.3	12.3		21.8	21.8	21.8
Effective Green, g (s)	94.8	85.0		99.0	87.1	87.1	15.3	15.3		24.8	24.8	24.8
Actuated g/C Ratio	0.63	0.57		0.66	0.58	0.58	0.10	0.10		0.17	0.17	0.17
Clearance Time (s)	5.0	6.0		5.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	2.5	2.5		2.5	2.5	2.5
Lane Grp Cap (vph)	316	2861	_	202	2953	919	350	349		503	522	262
v/s Ratio Prot	0.02	c0.43		c0.05	0.24	010	0.03	c0.06		0.11	c0.12	LUL
v/s Ratio Perm	0.16	00.40		0.33	0.24	0.09	0.00	00,00		0.11	00.12	0.02
v/c Ratio	0.28	0.76		0.57	0.41	0.16	0.29	0.60		0.68	0.73	0.10
Uniform Delay, d1	11.7	24.7		34.4	17.3	14.6	62.3	64.4		58.9	59.5	53.1
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.5	1.9		3.9	0.4	0.4	0.3	2.4		3.5	5.0	0.1
Delay (s)	12.2	26.6		38.3	17.7	14.9	62.6	66.9		62.4	64.5	53.2
Level of Service	В	C		D	В	В	E	E		E	E	D
Approach Delay (s)	-	26.0			18.8		-	65.6		-	61.7	
Approach LOS		C			В			E			E	
Intersection Summary		_								-		1
HCM Average Control Dela	y		32.6	H	CM Leve	l of Servic	e		С			
HCM Volume to Capacity ra			0.73									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliza	ation		76.0%			of Service	1		D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 160: Shady Glen Dr/Hill Rd & MD 214 West

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	+	7	+	*	1	1	ŧ	1	
Lane Group	EBT	EBR	WBT	WBR	NBT	NBR	SBT	SBR	
ane Group Flow (vph)	10	42	206	105	421	116	658	11	
v/c Ratio	0.03	0.11	0.69	0.24	0.36	0.11	0.60	0.01	
Control Delay	16.7	7.1	33.2	6.0	6.6	1.5	9.8	2.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.7	7.1	33.2	6.0	6.6	1.5	9.8	2.9	
Queue Length 50th (ft)	3	0	64	0	60	0	118	0	
Queue Length 95th (ft)	12	20	124	30	117	15	233	5	
nternal Link Dist (ft)	480		402		2121		554		
Turn Bay Length (ft)								100	
Base Capacity (vph)	437	454	364	500	1162	1065	1097	1027	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.09	0.57	0.21	0.36	0.11	0.60	0.01	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4	1		4	1		4	1
Volume (vph)	5	5	40	185	10	100	20	380	110	75	550	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Lane Util. Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Frt		1.00	0.85		1.00	0.85		1.00	0.85		1.00	0.85
Fit Protected		0.98	1.00		0.95	1.00		1.00	1.00		0.99	1.00
Satd. Flow (prot)		1817	1583		1779	1583		1858	1583		1852	1583
Flt Permitted		0.88	1.00		0.73	1.00		0.96	1.00		0.91	1.00
Satd. Flow (perm)		1635	1583		1361	1583		1796	1583		1698	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	5	42	195	11	105	21	400	116	79	579	11
RTOR Reduction (vph)	0	õ	33	0	0	82	0	0	41	0	0	4
Lane Group Flow (vph)	0	10	9	0	206	23	Ő	421	75	0	658	7
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	, orm	4	1 onin	1 onn	8	1 onn	1 onn	2	1 Onth	1 onn	6	(onn
Permitted Phases	4		4	8	U	8	2	-	2	6	0	6
Actuated Green, G (s)		13.2	13.2		13.2	13.2	-	38.9	38.9		38.9	38.9
Effective Green, g (s)		13.2	13.2		13.2	13.2		38.9	38.9		38.9	38.9
Actuated g/C Ratio		0.22	0.22		0.22	0.22		0.65	0.65		0.65	0.65
Clearance Time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)		359	348		299	348		1162	1025		1099	1025
v/s Ratio Prot			010		200	010		TIOL	1020		1000	TULU
v/s Ratio Perm		0.01	0.01		c0.15	0.01		0.23	0.05		c0.39	0.00
v/c Ratio		0.03	0.03		0.69	0.07		0.36	0.07		0.60	0.01
Uniform Delay, d1		18.4	18.4		21.6	18.6		4.9	3.9		6.1	3.8
Progression Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2		0.0	0.0		6.5	0.1		0.9	0.1		2.4	0.0
Delay (s)		18.4	18.4		28.0	18.7		5.8	4.1		8.5	3.8
Level of Service		В	В		С	В		A	А		A	A
Approach Delay (s)		18.4			24.9			5.4			8.4	
Approach LOS		В			С			А			A	
Intersection Summary						_						
HCM Average Control Delay			11.0	н	CM Level	of Service	Э		В			
HCM Volume to Capacity ratio			0.62									
Actuated Cycle Length (s)			60.1	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization	n		81.6%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 170: Hill Rd & Willow Hill Rd

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	*	1	1	1	4	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	105	1979	200	463	1384	126	274	126	400	568	321	316
v/c Ratio	0.43	1.39	0.36	0.65	0.65	0.18	0.76	0.33	0.33	0.72	0.76	0.60
Control Delay	72.7	219,9	11.2	59.7	39.1	11.3	69.1	51.7	30.4	58.6	65.0	20.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	72.7	219.9	11.2	59.7	39.1	11.3	69.1	51.7	30.4	58.6	65.0	20.4
Queue Length 50th (ft)	51	~941	25	217	400	18	255	106	146	267	296	86
Queue Length 95th (ft)	85	#1034	93	#439	538	72	333	156	213	310	381	178
Internal Link Dist (ft)		1118			496			563			1338	
Turn Bay Length (ft)	650		425	340						350		350
Base Capacity (vph)	242	1424	563	712	2120	715	502	528	1200	973	528	602
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.43	1.39	0.36	0.65	0.65	0.18	0.55	0.24	0.33	0.58	0.61	0.52

Queues 180: Hampton Park/Brightseat Rd. & MD 214 We

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻሻ	^	1	ሻሻ	^	1	٦	+	11	ሻሻ	1	7
Volume (vph)	100	1880	190	440	1315	120	260	120	380	540	305	300
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	1.00	1.00	0.88	0.97	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	3433	5085	1583	1770	1863	2787	3433	1863	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	3433	5085	1583	1770	1863	2787	3433	1863	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	105	1979	200	463	1384	126	274	126	400	568	321	316
RTOR Reduction (vph)	0	0	120	0	0	55	0	0	0	0	0	165
Lane Group Flow (vph)	105	1979	80	463	1384	71	274	126	400	568	321	151
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	pt+ov	Split	NA	Perm
Protected Phases	1	6	1 6.1.11	5	2		4	4	45	3	3	
Permitted Phases			6		-	2	-			_	-	3
Actuated Green, G (s)	8.6	39.0	39.0	29.1	59.5	59.5	27.6	27.6	62.7	31.3	31.3	31.3
Effective Green, g (s)	10.6	42.0	42.0	31.1	62.5	62.5	30.6	30.6	65.7	34.3	34.3	34.3
Actuated g/C Ratio	0.07	0.28	0.28	0.21	0.42	0.42	0.20	0.20	0.44	0.23	0.23	0.23
Clearance Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	2.5	5.0	5.0	5.0	5.0	5.0	2.5	2.5		2.5	2.5	2.5
Lane Grp Cap (vph)	243	1424	443	712	2119	660	361	380	1221	785	426	362
v/s Ratio Prot	0.03	c0.39		c0.13	0.27		c0.15	0.07	0.14	0.17	c0.17	
v/s Ratio Perm		0.740.0	0.05			0.04						0.10
v/c Ratio	0.43	1.39	0.18	0.65	0.65	0.11	0.76	0.33	0.33	0.72	0.75	0.42
Uniform Delay, d1	66.8	54.0	41.0	54.5	35.1	26.7	56.2	51.0	27.7	53.5	53.9	49.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.9	179.8	0.9	2.9	1.6	0.3	8.4	0.4	0.1	3.1	7.0	0.6
Delay (s)	67.7	233.8	41.9	57.3	36.6	27.0	64.7	51.3	27.8	56.6	61.0	49.9
Level of Service	Е	F	D	E	D	С	E	D	С	E	E	D
Approach Delay (s)		209.3			40.9			44.1			56.0	
Approach LOS		F			D			D			E	
Intersection Summary												- 1
HCM Average Control Delay			105.6	Ĥ	CM Leve	of Servic	e		— F	_		
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization			92.7%			of Service			F			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

200: MD 214/MD 2	14 vves	[& I-4	92 SB	oπ-ra	mp to VVB 214	7/24/2012
	+	1	+	1		
Lane Group	EBT	WBL	WBT	SBR		
Lane Group Flow (vph)	2579	616	1479	279		
v/c Ratio	0.85	0.88	0.35	0.52		
Control Delay	33.2	83.4	4.1	27.5		
Queue Delay	23.2	0.0	0.0	0.0		
Total Delay	56.4	83.4	4.1	27.5		
Queue Length 50th (ft)	849	367	119	54		
Queue Length 95th (ft)	949	429	123	114		
Internal Link Dist (ft)	215		315			
Turn Bay Length (ft)		325				
Base Capacity (vph)	3051	801	4322	535		
Starvation Cap Reductn	581	0	0	0		
Spillback Cap Reductn	0	0	0	0		
Storage Cap Reductn	0	0	0	0		
Reduced v/c Ratio	1.04	0.77	0.34	0.52		

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	1	-	7	1	+	*	1	t	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		†††		ካካ	^							15
Volume (vph)	0	2450	0	585	1405	0	0	0	0	0	0	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0							4.0
Lane Util. Factor		0.91		0.97	0.91							0.88
Frt		1.00		1.00	1.00							0.85
Flt Protected		1.00		0.95	1.00							1.00
Satd. Flow (prot)		5085		3433	5085							2787
Flt Permitted		1.00		0.95	1.00							1.00
Satd. Flow (perm)		5085		3433	5085							2787
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	2579	0	616	1479	0	0	0	0	0	0	279
RTOR Reduction (vph)	0	0	0	0	0	Ő	õ	0	Ő	Ő	0	167
Lane Group Flow (vph)	0	2579	0	616	1479	0	0	0	0	0	0	112
Turn Type		NA		Prot	NA	-				Υ.		custom
Protected Phases		4		3	8							ouoton
Permitted Phases												6
Actuated Green, G (s)		107.3		36.9	148.2							23.8
Effective Green, g (s)		107.3		36.9	148.2							23.8
Actuated g/C Ratio		0.60		0.20	0.82							0.13
Clearance Time (s)		4.0		4.0	4.0							4.0
Vehicle Extension (s)		3.0		3.0	3.0							3.0
Lane Grp Cap (vph)		3031	_	704	4187							369
v/s Ratio Prot		c0.51		c0.18	0.29							000
v/s Ratio Perm												c0.04
v/c Ratio		0.85		0.88	0.35							0.30
Uniform Delay, d1		29.8		69.3	4.0							70.6
Progression Factor		1.00		1.00	1.00							1.00
Incremental Delay, d2		2.5		11.7	0.1							2.1
Delay (s)		32.3		81.0	4.0							72.7
Level of Service		C		F	A							E
Approach Delay (s)		32.3			26.7			0.0			72.7	-
Approach LOS		C			C			A			E	
Intersection Summary												
HCM Average Control Delay			32.2	н	CM Level	of Service	Э		С			
HCM Volume to Capacity ratio			0.78									
Actuated Cycle Length (s)			180.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	1.		96.4%			of Service			F			
Analysis Period (min)			15	19								
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 200: MD 214/MD 214 West & I-495 SB off-ramp to WB 214

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

		-		
	-+	1	1	
Lane Group	EBT	WBT	NBL	
Lane Group Flow (vph)	2447	1895	200	
v/c Ratio	0.72	0.56	0.25	
Control Delay	9.9	7.7	29.0	
Queue Delay	0.0	0.0	0.0	
Total Delay	9.9	7.7	29.0	
Queue Length 50th (ft)	252	161	47	
Queue Length 95th (ft)	300	193	79	
Internal Link Dist (ft)	369	230	179	
Turn Bay Length (ft)				
Base Capacity (vph)	3908	3908	796	
Starvation Cap Reductn	0	0	0	
Spillback Cap Reductn	0	0	0	
Storage Cap Reductn	0	0	0	
Reduced v/c Ratio	0.63	0.48	0.25	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	-+	>	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	***	EBIT	THE	111	ካካ	THE T		
Volume (vph)	2325	0	0	1800	190	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	1000	1000	4.0	4.0	1000		
Lane Util. Factor	0.91			0.91	0.97			
Frt	1.00			1.00	1.00			
Flt Protected	1.00			1.00	0.95			
Satd. Flow (prot)	5085			5085	3433			
Flt Permitted	1.00			1.00	0.95			
Satd. Flow (perm)	5085			5085	3433			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	2447	0.55	0.55	1895	200	0.55		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	2447	0	0	1895	200	0		
Turn Type	NA	0	U	NA	NA	Ų		
Protected Phases	4			8	2			
Permitted Phases	4			0	2			
Actuated Green, G (s)	55.6			55.6	19.2			
Effective Green, g (s)	55.6			55.6	19.2			
	0.67			0.67	0.23			
Actuated g/C Ratio	4.0				4.0			
Clearance Time (s)	4.0			4.0 3.0	3.0			
Vehicle Extension (s)								
Lane Grp Cap (vph)	3415			3415	796			
v/s Ratio Prot	c0.48			0.37	c0.06			
v/s Ratio Perm	0.70			0.55	0.05			
v/c Ratio	0.72			0.55	0.25			
Uniform Delay, d1	8.6			7,1	25.9			
Progression Factor	1.00			1.00	1.00			
Incremental Delay, d2	0.7 9.3			0.2 7.3	0.8 26.7			
Delay (s)								
Level of Service	A 9.3			A 7.3	C 26.7			
Approach Delay (s) Approach LOS	9.3 A			7.3 A	20.7 C			
	2			0	U			
Intersection Summary		-	9.3	11	OMLauri	of Service	A	
HCM Average Control Dela				н	CIVI LEVEI	OI SEIVICE	A	
HCM Volume to Capacity ra	Olle		0.60		um of last	time (a)	0.0	
Actuated Cycle Length (s)			82.8		um of lost		8.0	
Intersection Capacity Utiliza	auon		57.0%	IC	U Level o	Service	В	
Analysis Period (min) c Critical Lane Group			15					

HCM Signalized Intersection Capacity Analysis 240: I-495 NB to WB off-ramp & MD 214

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	1	*	1	1	
Lane Group	EBL	EBT	WBL	WBR	NBT	NBR	
Lane Group Flow (vph)	84	1469	284	42	906	273	
v/c Ratio	0.40	1.07dr	0.71	0.05	0.67	0.33	
Control Delay	20.7	16.5	41.6	4.2	26.6	4.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.7	16.5	41.6	4.2	26.6	4.8	
Queue Length 50th (ft)	8	142	145	0	149	27	
Queue Length 95th (ft)	54	238	242	17	217	72	
Internal Link Dist (ft)		672			788		
Turn Bay Length (ft)							
Base Capacity (vph)	263	2213	583	999	1700	954	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.32	0.66	0.49	0.04	0.53	0.29	

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	~	1	+	*	1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	7	**		٦		1		444	1			
Volume (vph)	80	430	965	270	0	40	0	600	520	0	0	(
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	4.0	4.0		4.0		4.0		4.0	4.0			
Lane Util. Factor	1.00	0.91		1.00		1.00		0.86	0.86			
Frt	1.00	0.90		1.00		0.85		0.95	0.85			
Fit Protected	0.95	1.00		0.95		1.00		1.00	1.00			
Satd. Flow (prot)	1770	4558		1770		1583		4588	1362			
Flt Permitted	0.95	1.00		0.95		1.00		1.00	1.00			
Satd. Flow (perm)	1770	4558		1770		1583		4588	1362			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	84	453	1016	284	0.00	42	0.55	632	547	0.55	0.55	0.50
RTOR Reduction (vph)	66	391	0	0	0	19	0	82	90	0	0	(
Lane Group Flow (vph)	18	1078	0	284	0	23	0	824	183	0	0	(
Turn Type	Prot	NA	U	Prot	0	custom	0	NA	pm+ov	Ų.	0	
Protected Phases	7	4		3		custom		2	3			
Permitted Phases	/	4		3		8		2	2			
Actuated Green, G (s)	4.0	30.6		18.5		45.1		22.6	41.1			
Effective Green, g (s)	4.0	30.6		18.5		45.1		22.0	41.1			
	0.05	0.37		0.22		0.54		0.27	0.49			
Actuated g/C Ratio	4.0	4.0		4.0		4.0		4.0	4.0			
Clearance Time (s)				3.0		3.0		3.0				
Vehicle Extension (s)	3.0	3.0							3.0			_
Lane Grp Cap (vph)	85	1666		391		853		1239	734			
v/s Ratio Prot	0.01	c0.24		c0.16				c0.18	0.06			
v/s Ratio Perm		1.071				0.01		0.07	0.08			
v/c Ratio	0.22	1.07dr		0.73		0.03		0.67	0.25			
Uniform Delay, d1	38.3	22.1		30.3		9.0		27.2	12.4			
Progression Factor	1.00	1.00		1.00		1.00		1.00	1.00			
Incremental Delay, d2	1.3	0.9		6.6		0.0		1.4	0.2			
Delay (s)	39.6	22.9		36.8		9.0		28.5	12.5			
Level of Service	D	С		D	1.10	A		С	В			
Approach Delay (s)		23.8			33.3			24.8			0.0	
Approach LOS		C			C			C			A	
Intersection Summary						_						
HCM Average Control Delay			25.2	Ĥ	CM Leve	l of Service			С			
HCM Volume to Capacity ratio			0.67									
Actuated Cycle Length (s)			83.7	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	11.1		70.5%			of Service			С			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis

c Critical Lane Group

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

270: Lottsford Road		y 5. T	ruman	Drive	-	_	7/24/2012
	1	+	1	t	ţ	1	
Lane Group	WBL	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	63	721	21	189	453	221	
v/c Ratio	0.12	0.45	0.05	0.23	0.29	0.27	
Control Delay	12.8	8,9	7.3	8.2	8.0	2.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.8	8.9	7.3	8.2	8.0	2.3	
Queue Length 50th (ft)	10	28	2	24	30	0	
Queue Length 95th (ft)	38	71	12	63	66	26	
Internal Link Dist (ft)		887		758	736		
Turn Bay Length (ft)						150	
Base Capacity (vph)	1307	3589	841	1711	3251	1472	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.20	0.02	0.11	0.14	0.15	
Intersection Summary	-	_				_	

Queues 270: Lottsford Road & Harry S. Truman Drive

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

and the second sec	٠	+	>	1	+	*	•	t	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1	***		٦	+			**	1
Volume (vph)	0	0	0	60	400	285	20	180	0	0	430	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	1000	1000	1000	5.0	5.0	1000	5.0	5.0	1000	1000	5.0	5.0
Lane Util. Factor				1.00	0.91		1.00	1.00			0.95	1.00
Frt				1.00	0.94		1.00	1.00			1.00	0.85
Flt Protected				0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)				1770	4768		1770	1863			3539	1583
Flt Permitted				0.95	1.00		0.49	1.00			1.00	1.00
Satd. Flow (perm)				1770	4768		914	1863			3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0.00	0.00	0.00	63	421	300	21	189	0.00	0.00	453	221
RTOR Reduction (vph)	Ő	0	0	0	175	0	0	0	0	0	0	122
Lane Group Flow (vph)	0	0	0	63	546	Ő	21	189	0	0	453	99
Turn Type	0	0	0	Split	NA	v	Perm	NA	v	Ŷ	NA	Perm
Protected Phases				3	3		1 Gilli	4			2	(GIII
Permitted Phases				5	5		4	4			2	2
Actuated Green, G (s)				12.5	12.5		18.4	18.4			18.4	18.4
Effective Green, g (s)				12.5	12.5		18.4	18.4			18.4	18.4
Actuated g/C Ratio				0.31	0.31		0.45	0.45			0.45	0.45
Clearance Time (s)				5.0	5.0		5.0	5.0			5.0	5.0
Vehicle Extension (s)				3.0	3.0		3.0	3.0			6.0	6.0
Lane Grp Cap (vph)				541	1457		411	838			1592	712
v/s Ratio Prot				0.04	c0.11		911	0.10			c0.13	112
v/s Ratio Perm				0.04	00.11		0.02	0.10			00.15	0.06
v/c Ratio				0.12	0.37		0.02	0.23			0.28	0.00
Uniform Delay, d1				10.2	11.1		6.3	6.9			7.1	6.6
Progression Factor				1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2				0.1	0.2		0.1	0.1			0.3	0.3
Delay (s)				10.3	11.3		6.4	7.0			7.4	6.9
Level of Service				B	B		A	A			A	A
Approach Delay (s)		0.0		U	11.2		~	7.0			7.2	
Approach LOS		A			B			A			A	
Intersection Summary												
HCM Average Control Delay			9.1	Ĥ	CM Leve	of Servic	e		A			
HCM Volume to Capacity ratio			0.32									
Actuated Cycle Length (s)			40.9	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization	h T		43.8%		U Level				А			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 270: Lottsford Road & Harry S. Truman Drive

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	1	+	1	t	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	_
Lane Group Flow (vph)	396	1209	76	503	200	779	132	630	297	
v/c Ratio	0.86	0.85	0.28	0.58	0.87	0.66	0.74	0.84	0.36	
Control Delay	58.9	44.4	45.0	46.2	85.4	36.2	76.1	44.2	11.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	58.9	44.4	45.0	46.2	85.4	36.2	76.1	44.2	11.0	
Queue Length 50th (ft)	325	322	58	134	149	160	96	189	83	
Queue Length 95th (ft)	#579	#439	113	179	#308	216	#195	273	158	
Internal Link Dist (ft)		719		1095		560		666		
Turn Bay Length (ft)			300		500		200			
Base Capacity (vph)	459	1426	407	1275	229	1292	198	854	836	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.86	0.85	0.19	0.39	0.87	0.60	0.67	0.74	0.36	

Queues 280[.] Lottsford Road & Arena Drive

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	٠	-	7	1	+	*	1	t	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	۲	4 † }		٦	477>		٦	4 † ‡		7	41	1
Volume (vph)	495	825	205	80	435	35	190	415	325	125	315	565
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	10.0.0	4.0	6.0		4.0	6.0	6.0
Lane Util. Factor	0.86	0.86		0.86	0.86		1.00	0.91		1.00	0.91	0.9
Frt	1.00	0.97		1.00	0.99		1.00	0.93		1.00	0.93	0.85
Fit Protected	0.95	0.99		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1522	4653		1522	4749		1770	4750		1770	3150	1441
Flt Permitted	0.95	0.99		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1522	4653		1522	4749		1770	4750		1770	3150	1441
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	521	868	216	84	458	37	200	437	342	132	332	595
RTOR Reduction (vph)	0	22	0	0	7	0	0	108	0	0	127	46
Lane Group Flow (vph)	396	1187	0	76	496	0	200	671	0	132	503	251
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	1	1		2	2		7	4		3	8	pinton
Permitted Phases				~	-					U	0	8
Actuated Green, G (s)	35.1	35.1		21.0	21.0		15.0	26.4		11.7	23.1	58.2
Effective Green, g (s)	35.1	35.1		21.0	21.0		15.0	26.4		11.7	23.1	58.2
Actuated g/C Ratio	0.30	0.30		0.18	0.18		0.13	0.23		0.10	0.20	0.50
Clearance Time (s)	6.0	6.0		6.0	6.0		4.0	6.0		4.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.0		2.0	3.0	3.0
Lane Grp Cap (vph)	460	1406		275	858	_	228	1079		178	626	796
v/s Ratio Prot	c0.26	0.26		0.05	c0.10		c0.11	c0.14		0.07	c0.16	0.10
v/s Ratio Perm	00.20	0.20		0.00	00.10		00.11	00.11		0.07	00.10	0.08
v/c Ratio	0.86	0.84		0.28	0.58		0.88	0.62		0.74	0.80	0.32
Uniform Delay, d1	38.2	38.0		41.0	43.5		49.7	40.4		50.8	44.4	17.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	15.1	4.8		0.5	0.9		28.5	1.1		13.5	7.4	0.2
Delay (s)	53.4	42.8		41.6	44.5		78.2	41.5		64.3	51.8	17.4
Level of Service	D	D		D	D		E	D		E	D	E
Approach Delay (s)		45.4		-	44.1		-	49.0		-	43.7	-
Approach LOS		D			D			D			D	
Intersection Summary												
HCM Average Control Dela	у		45.6	Ĥ	CM Leve	of Servic	e		D	_		
HCM Volume to Capacity ra			0.83									
Actuated Cycle Length (s)			116.2	S	um of los	t time (s)			28.0			
Intersection Capacity Utiliza	ation		83.2%			of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 280: Lottsford Road & Arena Drive

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
Lane Group Flow (vph)	1258	595	132	1079	279	205	
/c Ratio	0.74	0.59	0.65	0.46	0.71	0.40	
Control Delay	21.7	6,1	52.8	8.3	42.6	6.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.7	6.1	52.8	8.3	42.6	6.9	
Queue Length 50th (ft)	295	37	72	144	145	0	
Queue Length 95th (ft)	378	121	#142	187	232	54	
nternal Link Dist (ft)	494			472	436		
Turn Bay Length (ft)		150	350				
Base Capacity (vph)	1746	1022	226	2403	432	541	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.58	0.58	0.45	0.65	0.38	
Intersection Summary	-			-			

sour percenule volume exceeds capacity, qu sue may be longer.

Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

► SET 1195 1900 5.5 0.95 1.00 1.00 3539 1.00 3539 0.95 1258 0 1258 0 1258 0	SER 565 1900 5.5 1.00 0.85 1.00 1583 1.00 1583 1.00 1583 0.95 595 246	NWL 125 1900 5.0 1.00 1.00 0.95 1770 0.95 1770 0.95	NWT 1025 1900 5.5 0.95 1.00 1.00 3539 1.00 3539	NEL 265 1900 5.0 1.00 1.00 1.00 0.95 1770 0.95 1770	NER 7 195 1900 5.0 1.00 0.85 1.00 1583 1.00		
↑↑ 1195 1900 5.5 0.95 1.00 1.00 3539 1.00 3539 0.95 1258 0 1258	 ₱ 565 1900 5.5 1.00 0.85 1.00 1583 1.00 1583 0.95 595 	125 1900 5.0 1.00 1.00 0.95 1770 0.95 1770 0.95	↑↑ 1025 1900 5.5 0.95 1.00 1.00 3539 1.00 3539	265 1900 5.0 1.00 1.00 0.95 1770 0.95	ř 195 1900 5.0 1.00 0.85 1.00 1583		
1195 1900 5.5 0.95 1.00 3539 1.00 3539 0.95 1258 0 1258	565 1900 5.5 1.00 0.85 1.00 1583 1.00 1583 0.95 595	125 1900 5.0 1.00 0.95 1770 0.95 1770 0.95	1025 1900 5.5 0.95 1.00 1.00 3539 1.00 3539	265 1900 5.0 1.00 1.00 0.95 1770 0.95	195 1900 5.0 1.00 0.85 1.00 1583		
1900 5.5 0.95 1.00 3539 1.00 3539 0.95 1258 0 1258	1900 5.5 1.00 0.85 1.00 1583 1.00 1583 0.95 595	1900 5.0 1.00 0.95 1770 0.95 1770 0.95	1900 5.5 0.95 1.00 1.00 3539 1.00 3539	1900 5.0 1.00 1.00 0.95 1770 0.95	1900 5.0 1.00 0.85 1.00 1583		
5.5 0.95 1.00 3539 1.00 3539 0.95 1258 0 1258	5.5 1.00 0.85 1.00 1583 1.00 1583 0.95 595	5.0 1.00 1.00 0.95 1770 0.95 1770 0.95	5.5 0.95 1.00 1.00 3539 1.00 3539	5.0 1.00 1.00 0.95 1770 0.95	5.0 1.00 0.85 1.00 1583		
0.95 1.00 3539 1.00 3539 0.95 1258 0 1258	1.00 0.85 1.00 1583 1.00 1583 0.95 595	1.00 1.00 0.95 1770 0.95 1770 0.95	0.95 1.00 1.00 3539 1.00 3539	1.00 1.00 0.95 1770 0.95	1.00 0.85 1.00 1583		
1.00 1.00 3539 1.00 3539 0.95 1258 0 1258	0.85 1.00 1583 1.00 1583 0.95 595	1.00 0.95 1770 0.95 1770 0.95	1.00 1.00 3539 1.00 3539	1.00 0.95 1770 0.95	0.85 1.00 1583		
1.00 3539 1.00 3539 0.95 1258 0 1258	1.00 1583 1.00 1583 0.95 595	0.95 1770 0.95 1770 0.95	1.00 3539 1.00 3539	0.95 1770 0.95	1.00 1583		
3539 1.00 3539 0.95 1258 0 1258	1583 1.00 1583 0.95 595	1770 0.95 1770 0.95	3539 1.00 3539	1770 0.95	1583		
1.00 3539 0.95 1258 0 1258	1.00 1583 0.95 595	0.95 1770 0.95	1.00 3539	0.95			
3539 0.95 1258 0 1258	1583 0.95 595	1770 0.95	3539		1.00		
0.95 1258 0 1258	0.95 595	0.95			1583		
1258 0 1258	595		0.95	0.95	0.95		
0 1258		132	1079	279	205		
1258	1/10	0	0	0	159		
	349	132	1079	279	46		
AIA -							
	Felli			INA	custom		
0	c	0	2	0	0		
41.0		10.0	56.0				
	765			393	351		
c0.36		c0.07	0.30				
-		1000					
	and the second second						
	В	D			C		
В			В	С			
		18.5	н	CM Leve	of Service	В	
		86.5	S	um of los	st time (s)	15.5	
1		67.6%				С	
		15					
	NA 6 41.8 41.8 0.48 5.5 6.0 1710 c0.36 0.74 17.9 1.00 2.3 20.2 C 18.9 B	NA Perm 6 41.8 41.8 41.8 41.8 0.48 0.48 5.5 5.5 6.0 6.0 1710 765 c0.36 0.22 0.74 0.46 17.9 14.8 1.00 1.00 2.3 1.2 20.2 16.0 C B 18.9 B	NA Perm Prot 6 5 6 6 41.8 41.8 10.0 41.8 41.8 10.0 41.8 41.8 10.0 0.48 0.48 0.12 5.5 5.5 5.0 6.0 6.0 3.0 1710 765 205 0.30 0.22 0.74 0.46 0.64 17.9 14.8 36.5 1.00 1.00 2.3 1.2 6.8 20.2 16.0 43.3 C B D 18.9 B 18.9 B	NA Perm Prot NA 6 5 2 6 - - 41.8 41.8 10.0 56.8 41.8 41.8 10.0 56.8 41.8 41.8 10.0 56.8 0.48 0.48 0.12 0.66 5.5 5.5 5.0 5.5 6.0 6.0 3.0 6.0 1710 765 205 2324 c0.36 c0.07 0.30 0.22 0.74 0.46 0.64 0.46 17.9 14.8 36.5 7.3 1.00 1.00 1.00 1.00 2.3 1.2 6.8 0.4 20.2 16.0 43.3 7.8 C B D A 18.9 11.6 B B 20.2 16.0 43.3 7.8 C B D A	NA Perm Prot NA NA 6 5 2 6 8 41.8 41.8 10.0 56.8 19.2 41.8 41.8 10.0 56.8 19.2 41.8 41.8 10.0 56.8 19.2 0.48 0.48 0.12 0.66 0.22 5.5 5.5 5.0 5.5 5.0 6.0 6.0 3.0 6.0 6.0 1710 765 205 2324 393 c0.36 c0.07 0.30 0.22 c0.16 0.74 0.46 0.64 0.46 0.71 17.9 14.8 36.5 7.3 31.1 1.00 1.00 1.00 1.00 1.00 2.3 1.2 6.8 0.4 8.4 20.2 16.0 43.3 7.8 39.5 C B D A D	NA Perm Prot NA NA custom 6 5 2 6 8 8 41.8 41.8 10.0 56.8 19.2 19.2 41.8 41.8 10.0 56.8 19.2 19.2 41.8 41.8 10.0 56.8 19.2 19.2 0.48 0.48 0.12 0.66 0.22 0.22 5.5 5.5 5.0 5.5 5.0 6.0 6.0 6.0 3.0 6.0 6.0 6.0 1710 765 205 2324 393 351 c0.36 c0.07 0.30 0.22 c0.16 0.03 0.74 0.46 0.64 0.46 0.71 0.13 17.9 14.8 36.5 7.3 31.1 27.0 1.00 1.00 1.00 1.00 1.00 2.2 16.0 43.3 7.8 39.5 27.4 <tr< td=""><td>NA Perm Prot NA NA custom 6 5 2 6 8 8 41.8 41.8 10.0 56.8 19.2 19.2 41.8 41.8 10.0 56.8 19.2 19.2 0.48 0.48 0.12 0.66 0.22 0.22 5.5 5.5 5.0 5.5 5.0 6.0 6 6.0 3.0 6.0 6.0 6.0 1710 765 205 2324 393 351 c0.36 c0.07 0.30 0.22 c0.16 0.03 0.74 0.46 0.64 0.46 0.71 0.13 17.9 14.8 36.5 7.3 31.1 27.0 1.00 1.00 1.00 1.00 1.00 2.2 20.2 16.0 43.3 7.8 39.5 27.4 C B D A D C <</td></tr<>	NA Perm Prot NA NA custom 6 5 2 6 8 8 41.8 41.8 10.0 56.8 19.2 19.2 41.8 41.8 10.0 56.8 19.2 19.2 0.48 0.48 0.12 0.66 0.22 0.22 5.5 5.5 5.0 5.5 5.0 6.0 6 6.0 3.0 6.0 6.0 6.0 1710 765 205 2324 393 351 c0.36 c0.07 0.30 0.22 c0.16 0.03 0.74 0.46 0.64 0.46 0.71 0.13 17.9 14.8 36.5 7.3 31.1 27.0 1.00 1.00 1.00 1.00 1.00 2.2 20.2 16.0 43.3 7.8 39.5 27.4 C B D A D C <

HCM Signalized Intersection Capacity Analysis 290: Shoppers Way & Arena Drive

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	1	*	t	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBT	
Lane Group Flow (vph)	116	53	689	95	1321	
v/c Ratio	0.51	0.21	0.46	0.07	0.94	
Control Delay	42.4	11.9	5.0	0.9	26.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	42.4	11.9	5.0	0.9	26.3	
Queue Length 50th (ft)	59	0	106	0	538	
Queue Length 95th (ft)	110	31	207	11	#1071	
Internal Link Dist (ft)	536		382		427	
Turn Bay Length (ft)				100		
Base Capacity (vph)	332	340	1502	1294	1398	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.35	0.16	0.46	0.07	0.94	
Intersection Summary	_	-	-	-		

Queue shown is maximum after two cycles.

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

	1	•	t	1	4	1 L		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	1	1	1		ŧ		
Volume (vph)	110	50	655	90	70	1185		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.5	4.5	4.5	4.5		4.5		
Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		
Frt	1.00	0.85	1.00	0.85		1.00		
Fit Protected	0.95	1.00	1.00	1.00		1.00		
Satd. Flow (prot)	1770	1583	1863	1583		1858		
Flt Permitted	0.95	1.00	1.00	1.00		0.93		
Satd. Flow (perm)	1770	1583	1863	1583		1733		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	116	53	689	95	74	1247		
RTOR Reduction (vph)	0	47	0	21	0	0		
Lane Group Flow (vph)	116	6	689	74	0	1321		
Turn Type	NA	Prot	NA	Perm	Perm	NA		
Protected Phases	3	3	6	1 Oni	1 onn	2		
Permitted Phases	0	0	v	6	2	2		
Actuated Green, G (s)	9.2	9.2	66.0	66.0	-	66.0		
Effective Green, g (s)	9.2	9.2	66.0	66.0		66.0		
Actuated g/C Ratio	0.11	0.11	0.78	0.78		0.78		
Clearance Time (s)	4.5	4.5	4.5	4.5		4.5		
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		
Lane Grp Cap (vph)	193	173	1460	1241		1358		
v/s Ratio Prot	c0.07	0.00	0.37	16-11		1000		
v/s Ratio Perm	00.07	0.00	0.01	0.05		c0.76		
v/c Ratio	0.60	0.03	0.47	0.06		0.97		
Uniform Delay, d1	35.8	33.5	3.1	2.1		8.3		
Progression Factor	1.00	1.00	1.00	1.00		1.00		
Incremental Delay, d2	5.2	0.1	0.2	0.0		18.2		
Delay (s)	40.9	33.6	3.4	2.1		26.4		
Level of Service	D	C	A	A		C		
Approach Delay (s)	38.6		3.2			26.4		
Approach LOS	D		A			С		
Intersection Summary								
HCM Average Control Dela	iy		19.3	H	CM Leve	of Service	В	
HCM Volume to Capacity ra			0.93					
Actuated Cycle Length (s)			84.2	S	um of los	t time (s)	9.0	
Intersection Capacity Utiliza	ation		118.1%			of Service	Н	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 300: Addison Rd. & Wilburn Dr

2035_PM_No Build 5:00 pm 5/3/2012 2035_PM_No Build CJD

Appendix 5 Build Scenario #1 Traffic Analysis and Queuing Reports

	-	-	*	+	۲	1	*	
Lane Group	EBL	EBT	WBL	WBT	WBR	NET	SWT	
Lane Group Flow (vph)	57	310	93	2269	175	825	567	
v/c Ratio	0.43	0.15	0.12	1.08	0,18	1.11	0.78	
Control Delay	22.6	13.4	7.9	77.0	8.2	116.4	52.2	
Queue Delay	0.0	0.0	0.0	43.0	0.0	0.0	0.0	
Total Delay	22.6	13.4	7.9	120.0	8.2	116.4	52.2	
Queue Length 50th (ft)	18	65	27	~1320	43	~492	248	
Queue Length 95th (ft)	47	90	47	#1447	79	#627	325	
Internal Link Dist (ft)		460		823		251	355	
Turn Bay Length (ft)	175		330		200			
Base Capacity (vph)	132	2105	764	2092	994	740	730	
Starvation Cap Reductn	0	0	0	174	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.43	0.15	0.12	1.18	0.18	1.11	0.78	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	1	-	7	F	+	٤	3	*	1	6	*	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	7	↑ 1→		٦	† †	1	_	414			414	_
Volume (vph)	55	275	25	90	2200	170	65	725	10	30	350	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		-1.0	6.0	3.0		3.0			3.0	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00		0.95			0.95	
Frt	1.00	0.99		1.00	1.00	0.85		1.00			0.95	
Fit Protected	0.95	1.00		0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)	1770	3495		1770	3539	1583		3518			3366	
Flt Permitted	0.05	1.00		0.56	1.00	1.00		0.70			0.69	
Satd. Flow (perm)	89	3495		1049	3539	1583		2487			2341	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor (vph)	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%
Adj. Flow (vph)	57	284	26	93	2269	175	67	748	10	31	361	175
RTOR Reduction (vph)	0	5	0	0	0	27	0	1	0	0	34	C
Lane Group Flow (vph)	57	305	0	93	2269	148	0	824	0	0	533	Ċ
Turn Type	pm+pt	NA	-	pm+pt	NA	Perm	Perm	NA	-	Perm	NA	
Protected Phases	5	2		1	6	1 onn	1 onth	4		1 onn	8	
Permitted Phases	2	-		6		6	4			8		
Actuated Green, G (s)	87.2	82.9		86.6	82.6	82.6		41.0			41.0	
Effective Green, g (s)	89.2	87.9		95.9	87.6	90.6		44.0			44.0	
Actuated g/C Ratio	0.60	0.59		0.64	0.59	0.61		0.30			0.30	
Clearance Time (s)	4.0	11.0		4.0	11.0	11.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	113	2063		719	2082	963		735			692	-
v/s Ratio Prot	c0.02	0.09		c0.01	c0.64	000		100			002	
v/s Ratio Perm	0.28	0.00		0.08	00.04	0.09		c0.33			0.23	
v/c Ratio	0.50	0.15		0.13	1.09	0.15		1.12			0.77	
Uniform Delay, d1	34.5	13.7		10.0	30.7	12.6		52.5			47.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	3.5	0.0		0.1	49.1	0.1		71.9			5.3	
Delay (s)	38.0	13.7		10.0	79.7	12.7		124.3			53.1	
Level of Service	D	В		B	E	В		F			D	
Approach Delay (s)	2	17.5			72.5			124.3			53.1	
Approach LOS		В			E			F			D	
Intersection Summary						_						
HCM Average Control Delay			75.2	Н	CM Level	of Service	Э		E			
HCM Volume to Capacity ra	itio		1.08									
Actuated Cycle Length (s)			148.9	S	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	tion	1.	116.2%	IC	U Level	of Service			н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 10: Southern Ave NE & MD 214 West

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	-+	F	+	*	*	
ane Group	EBT	WBL	WBT	NET	SWT	
ane Group Flow (vph)	332	163	2564	79	10	
//c Ratio	0.16	0.51	0.88	0.35	0.05	
Control Delay	7.8	30.2	11.4	19.3	23.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	7.8	30.2	11.4	19.3	23.0	
Queue Length 50th (ft)	30	59	272	13	3	
Queue Length 95th (ft)	60	111	#720	48	15	
nternal Link Dist (ft)	823		427	436	351	
Furn Bay Length (ft)		225				
Base Capacity (vph)	2075	398	2908	764	793	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.41	0.88	0.10	0.01	

Queue shown is maximum after two cycles.

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	-	+	7	*	+	٤	3	*	1	6	*	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	۲	1		۲	† Ъ			4			4	_
Volume (vph)	0	300	15	155	2425	10	30	5	40	5	0	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		3.0		3.0	3.0	1 - 1 - 1		3.0			3.0	
Lane Util. Factor		0.95		1.00	0.95			1.00			1.00	
Frt		0.99		1.00	1.00			0.93			0.93	
Fit Protected		1.00		0.95	1.00			0.98			0.98	
Satd. Flow (prot)		3514		1770	3537			1695			1695	
Flt Permitted		1.00		0.95	1.00			0.87			0.92	
Satd. Flow (perm)		3514		1770	3537			1504			1603	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	316	16	163	2553	11	32	5	42	5	0	5
RTOR Reduction (vph)	Ő	3	0	0	0	0	0	38	0	0	2	0
Lane Group Flow (vph)	0	329	0	163	2564	0	0	41	0	0	8	0
Turn Type	Perm	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	1 onth	4		3	8		1 onn	2		1 Griff	6	
Permitted Phases	4			U	0		2	~		6	0	
Actuated Green, G (s)		38.4		11.0	53.4		-	6.2		U	6.2	
Effective Green, g (s)		39.4		12.0	54.4			7.2			7.2	
Actuated g/C Ratio		0.58		0.18	0.80			0.11			0.11	
Clearance Time (s)		4.0		4.0	4.0			4.0			4.0	
Vehicle Extension (s)		3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)		2048	-	314	2846			160			171	
v/s Ratio Prot		0.09		0.09	c0.72						363	
v/s Ratio Perm								c0.03			0.01	
v/c Ratio		0.16		0.52	0.90			0.26			0.05	
Uniform Delay, d1		6.5		25.2	4.7			27.7			27.1	
Progression Factor		1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2		0.0		1.5	4.4			0.9			0.1	
Delay (s)		6.5		26.6	9.1			28.6			27.2	
Level of Service		A		С	A			С			С	
Approach Delay (s)		6.5			10.1			28.6			27.2	
Approach LOS		А			В			С			С	
Intersection Summary										_		- 0
HCM Average Control Delay			10.3	н	CM Level	of Servic	е		В			
HCM Volume to Capacity ratio			0.83									
Actuated Cycle Length (s)			67.6	S	um of lost	t time (s)			6.0			
Intersection Capacity Utilization	1		85.8%	IC	U Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 20: Davey Street & MD 214 West

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	٠	+	1	+	1	t	1	4	+	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	_
Lane Group Flow (vph)	41	774	129	2646	485	433	150	57	170	
v/c Ratio	0.26	0.34	0.26	1.10	1.08	0.62	0.28	0.43	0.38	
Control Delay	9.8	10.5	7.2	75.7	120.8	54.7	7.0	71.8	55.1	
Queue Delay	0.0	0.0	0.0	76.4	0.0	0.0	0.0	0.0	0.0	
Total Delay	9.8	10.5	7.2	152.1	120.8	54.7	7.0	71.8	55.1	
Queue Length 50th (ft)	9	141	30	~1420	~250	191	0	49	72	
Queue Length 95th (ft)	22	200	58	#1655	#384	249	53	99	109	
Internal Link Dist (ft)		307		408		726			986	
Turn Bay Length (ft)	200		175		350		575	200		
Base Capacity (vph)	160	2325	494	2402	448	1003	544	139	814	
Starvation Cap Reductn	0	0	0	325	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.33	0.26	1.27	1.08	0.43	0.28	0.41	0.21	

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

Synchro 7 - Report Page 5

281

	٠	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	† 1+		٦	† Ъ		ካካ	^	1	7	↑ Ъ	
Volume (vph)	40	625	125	125	2465	100	470	420	145	55	155	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	0.5	0.0		0.5	0.0		0.5	1.0	0.5	0.5	1.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95	1.00	1.00	0.95	
Frt	1.00	0.97		1.00	0.99		1.00	1.00	0.85	1.00	0.99	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	3451		1770	3519		3433	3539	1583	1770	3508	
Flt Permitted	0.05	1.00		0.30	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	84	3451		561	3519		3433	3539	1583	1770	3508	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Growth Factor (vph)	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%
Adj. Flow (vph)	41	645	129	129	2543	103	485	433	150	57	160	10
RTOR Reduction (vph)	0	10	0	0	2	0	0	0	110	0	3	(
Lane Group Flow (vph)	41	764	0	129	2644	0	485	433	40	57	167	(
Turn Type	pm+pt	NA	-	pm+pt	NA	-	Prot	NA	pm+ov	Prot	NA	
Protected Phases	1	6		5	2		7	4	5	3	8	
Permitted Phases	6			2	-			-	4		°.	
Actuated Green, G (s)	89.2	85.3		94.2	87.8		14.5	23.5	29.9	5.9	14.9	
Effective Green, g (s)	95.2	89.3		98.2	91.8		17.5	26.5	35.9	8.9	17.9	
Actuated g/C Ratio	0.70	0.66		0.72	0.67		0.13	0.19	0.26	0.07	0.13	
Clearance Time (s)	3.5	4.0		3.5	4.0		3.5	4.0	3.5	3.5	4.0	
Vehicle Extension (s)	2.5	5.0		2.5	5.0		2.5	2.5	2.5	2.5	2.5	
Lane Grp Cap (vph)	144	2264		488	2374		441	689	418	116	461	
v/s Ratio Prot	c0.01	0.22		c0.02	c0.75		c0.14	c0.12	0.01	0.03	0.05	
v/s Ratio Perm	0.18			0.17					0.02			
v/c Ratio	0.28	0.34		0.26	1.11		1.10	0.63	0.09	0.49	0.36	
Uniform Delay, d1	33.0	10.3		6.6	22.1		59.3	50.3	37.8	61.4	53.9	
Progression Factor	0.98	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.8	0.2		0.2	57.8		72.7	1.6	0.1	2.4	0.4	
Delay (s)	33.2	10.5		6.8	80.0		132.0	51.8	37.9	63.8	54.2	
Level of Service	C	В		А	E		F	D	D	E	D	
Approach Delay (s)		11.7			76.6			86.3			56.6	
Approach LOS		В			E			F			E	
Intersection Summary												
HCM Average Control Dela	ay		66.9	Н	CM Level	of Servic	e		E			
HCM Volume to Capacity r			0.97			-						
Actuated Cycle Length (s)			136.1	S	um of lost	time (s)			1.0			
Intersection Capacity Utiliz	ation		05.0%	10	U Level	of Service			G			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 30: Addison Rd. & MD 214 West

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	-+	1	+	1	
Lane Group	EBT	WBL	WBT	NBL	
Lane Group Flow (vph)	869	279	2658	263	
v/c Ratio	0.62	0.73	1.11	0.68	
Control Delay	19.6	37.9	71.8	29.8	
Queue Delay	0.0	0.0	0.0	0.0	
Total Delay	19.6	37.9	71.8	29.8	
Queue Length 50th (ft)	147	106	~684	84	
Queue Length 95th (ft)	246	#218	#951	154	
Internal Link Dist (ft)	408		824	134	
Turn Bay Length (ft)		175			
Base Capacity (vph)	1406	443	2394	681	
Starvation Cap Reductn	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	
Storage Cap Reductn	0	0	0	0	
Reduced v/c Ratio	0.62	0.63	1.11	0.39	
Intersection Summary					

Queue shown is maximum after two cycles.

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	-+	>	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	101	LDIX	T	1	Y	TIDI V		
Volume (vph)	695	130	265	2525	150	100		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	1500	4.0	4.0	4.0	1500		
Lane Util. Factor	0.95		1.00	0.95	1.00			
Frt	0.98		1.00	1.00	0.95			
Fit Protected	1.00		0.95	1.00	0.97			
Satd. Flow (prot)	3456		1770	3539	1711			
Flt Permitted	1.00		0.95	1.00	0.97			
Satd. Flow (perm)	3456		1770	3539	1711			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	732	137	279	2658	158	105		
RTOR Reduction (vph)	132	0	0	2000	35	0		
Lane Group Flow (vph)	852	0	279	2658	228	0		
	NA	0	Prot	NA	NA	0		
Turn Type Protected Phases	4		3	NA 8	2			
	4		3	0	2			
Permitted Phases	27.5		447	40.0	14.1			
Actuated Green, G (s)			14.7	46.2 46.2	14.1			
Effective Green, g (s)	27.5 0.40		14.7 0.22	0.68	0.21			
Actuated g/C Ratio								
Clearance Time (s)	4.0		4.0	4.0	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	1392		381	2394	353			
v/s Ratio Prot	0.25		0.16	c0.75	c0.13			
v/s Ratio Perm	0.04		0.70		0.05			
v/c Ratio	0.61		0.73	1.11	0.65			
Uniform Delay, d1	16.2		25.0	11.0	24.8			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.8		7.1	56.3	4.0			
Delay (s)	17.0		32.1	67.3	28.8			
Level of Service	B		С	E	C			
Approach Delay (s)	17.0			64.0	28.8			
Approach LOS	В			E	С			
Intersection Summary			-					
HCM Average Control Delay			51.7	н	CM Level	of Service	D	
HCM Volume to Capacity ra	atio		1.00					
Actuated Cycle Length (s)			68.3	S	um of lost	time (s)	8.0	
Intersection Capacity Utiliza	ation		90.9%	IC	U Level o	of Service	E	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 95: Addison Metro Station & MD 214 West

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

Lane Group Flow (vph) 5 8 v/c Ratio 0.07 0. Control Delay 68.6 10 Queue Delay 0.0 0 Total Delay 68.6 10 Queue Length 50th (ft) 4 1	.35 0. 0.1 72 0.0 (0.1 72	53	WBT 2864 0.99 27.0 18.3	NBT 152 0.68 56.3 0.0	SBT 31 0.14 27.2 0.0	
v/c Ratio 0.07 0. Control Delay 68.6 10 Queue Delay 0.0 0 Total Delay 68.6 10 Queue Length 50th (ft) 4 1	.35 0. 0.1 72 0.0 (0.1 72	.0 .0	0.99 27.0 18.3	0.68 56.3 0.0	0.14 27.2	
v/c Ratio 0.07 0. Control Delay 68.6 10 Queue Delay 0.0 0 Total Delay 68.6 10 Queue Length 50th (ft) 4 1	0.1 72 0.0 0 0.1 72	.0 .0	27.0 18.3	56.3 0.0	27.2	
Queue Delay 0.0 0 Total Delay 68.6 10 Queue Length 50th (ft) 4 1	0.0 0 0.1 72	.0	18.3	0.0	and the second sec	
Total Delay68.610Queue Length 50th (ft)41	0.1 72	100			0.0	
Queue Length 50th (ft) 4 1		.0	AE O			
	1/2 1		45.3	56.3	27.2	
a la	145 1	25	900	91	8	
Queue Length 95th (ft) 20 2	234 2	21	#1767	176	39	
Internal Link Dist (ft) 8	324		489	324	349	
Turn Bay Length (ft) 225	2	50				
Base Capacity (vph) 67 24	148 2	30	2901	339	344	
Starvation Cap Reductn 0	0	0	166	0	0	
Spillback Cap Reductn 0	0	0	0	0	0	
Storage Cap Reductn 0	0	0	0	0	0	
Reduced v/c Ratio 0.07 0.	.34 0.	55	1.05	0.45	0.09	

Queue shown is maximum after two cycles.

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	٠	-	7	1	+	*	1	t	1	4	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	41+		7	† Ъ			4			4	_
Volume (vph)	5	700	90	145	2710	10	60	0	85	5	5	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	10.00.		3.0			3.0	
Lane Util, Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	0.98		1.00	1.00			0.92			0.91	
Fit Protected	0.95	1.00		0.95	1.00			0.98			0.99	
Satd. Flow (prot)	1770	3479		1770	3537			1681			1679	
Flt Permitted	0.95	1.00		0.95	1.00			0.88			0.95	
Satd. Flow (perm)	1770	3479		1770	3537			1509			1608	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	737	95	153	2853	11	63	0	89	5	5	21
RTOR Reduction (vph)	0	5	0	0	0	0	0	36	0	0	18	0
Lane Group Flow (vph)	5	827	0	153	2864	Ő	0	116	0	0	13	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8		1 onn	2		1 Griffi	6	
Permitted Phases				U	0		2	-		6		
Actuated Green, G (s)	0.7	93.2		15.9	108.4		-	15.5		v	15.5	
Effective Green, g (s)	1.7	94.2		16.9	109.4			16.5			16.5	
Actuated g/C Ratio	0.01	0.69		0.12	0.80			0.12			0.12	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	22	2399		219	2833			182			194	
v/s Ratio Prot	0.00	0.24		c0.09	c0.81			102			104	
v/s Ratio Perm	0.00	0.21		00.00	00.01			c0.08			0.01	
v/c Ratio	0.23	0.34		0.70	1.01			0.64			0.06	
Uniform Delay, d1	66.8	8.6		57.4	13.6			57.2			53.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	5.2	0.1		9.3	19.6			7.1			0.1	
Delay (s)	72.0	8.7		66.7	33.2			64.3			53.4	
Level of Service	E	A		E	С			E			D	
Approach Delay (s)		9.1			34.9			64.3			53.4	
Approach LOS		A			С			E			D	
Intersection Summary												
HCM Average Control Dela			30.8	Ĥ	CM Level	of Service	e		С			
HCM Volume to Capacity ra	atio		0.96									
Actuated Cycle Length (s)			136.6	S	um of lost	time (s)			9.0			
Intersection Capacity Utiliza	ation		103.8%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis

2035_AM_Road_Diet 7:00 am 5/3/2012 2035_AM_Road_Diet CJD

	-	+	*	+	۲	1	*	
Lane Group	EBL	EBT	WBL	WBT	WBR	NET	SWT	
Lane Group Flow (vph)	309	1506	119	624	119	892	908	
v/c Ratio	0.67	0.99	0.48	0.54	0.19	0.68	0.98	
Control Delay	20.9	50.6	19.4	30.3	5,3	27.5	55.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.9	50.6	19.4	30.3	5.3	27.5	55.5	
Queue Length 50th (ft)	104	489	32	172	0	238	291	
Queue Length 95th (ft)	160	#663	68	234	38	308	#435	
Internal Link Dist (ft)		460		823		251	355	
Turn Bay Length (ft)	175		330		200			
Base Capacity (vph)	488	1517	250	1150	639	1308	926	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.99	0.48	0.54	0.19	0.68	0.98	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	-	-	7	*	+	٤	1	*	1	6	*	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations	۲	↑ Ъ		٦	† †	1		414	_	_	414	
Volume (vph)	300	1420	40	115	605	115	15	755	95	80	705	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.0		-1.0	6.0	3.0		3.0			3.0	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00		0.95			0.95	
Frt	1.00	1.00		1.00	1.00	0.85		0.98			0.98	
Fit Protected	0.95	1.00		0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)	1770	3525		1770	3539	1583		3478			3466	
Flt Permitted	0.26	1.00		0.12	1.00	1.00		0.93			0.66	
Satd. Flow (perm)	477	3525		229	3539	1583		3245			2291	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor (vph)	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%
Adj, Flow (vph)	309	1465	41	119	624	119	15	779	98	83	727	98
RTOR Reduction (vph)	0	2	0	0	0	77	0	10	0	0	9	0
Lane Group Flow (vph)	309	1504	0	119	624	42	Ő	882	0	Ő	899	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	~~~~	Perm	NA	
Protected Phases	5	2		1	6	1 onn	1 onth	4		1 onti	8	
Permitted Phases	2	-		6		6	4			8	U	
Actuated Green, G (s)	46.0	38.0		31.5	27.5	27.5		37.0		U	37.0	
Effective Green, g (s)	47.0	43.0		41.5	32.5	35.5		40.0			40.0	
Actuated g/C Ratio	0.47	0.43		0.42	0.32	0.36		0.40			0.40	
Clearance Time (s)	4.0	11.0		4.0	11.0	11.0		6.0			6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	425	1516		234	1150	562		1298			916	
v/s Ratio Prot	c0.11	c0.43		0.05	0.18	UUL		1200			010	
v/s Ratio Perm	0.23	00.40		0.17	0.10	0.03		0.27			c0.39	
v/c Ratio	0.73	0.99		0.51	0.54	0.08		0.68			0.98	
Uniform Delay, d1	18.2	28.3		22.6	27.7	21.4		24.7			29.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	6.1	21.2		1.7	0.5	0.1		1.4			25.1	
Delay (s)	24.3	49.5		24.4	28.2	21.4		26.2			54.7	
Level of Service	C	D		C	C	C		C			D	
Approach Delay (s)	Ű	45.2		0	26.7	0		26.2			54.7	
Approach LOS		D			C			C			D	
Intersection Summary												
HCM Average Control Delay			39.8	H	CM Leve	of Servic	e		D			
HCM Volume to Capacity rat			0.98									
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilizati	ion		109.1%			of Service			Н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 10: Southern Ave NE & MD 214 West

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	-	-	*	+	1	*	
Lane Group	EBL	EBT	WBL	WBT	NET	SWT	
Lane Group Flow (vph)	5	1673	147	852	178	15	
v/c Ratio	0.03	0.81	0.91	0.34	0.49	0.06	
Control Delay	23.4	14.1	80.9	4.5	11.8	15.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.4	14.1	80.9	4.5	11.8	15.8	
Queue Length 50th (ft)	1	184	46	32	12	3	
Queue Length 95th (ft)	10	#400	#143	120	55	15	
Internal Link Dist (ft)		823		427	436	351	
Turn Bay Length (ft)	235		225				
Base Capacity (vph)	162	2078	162	2494	956	921	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.81	0.91	0.34	0.19	0.02	
Intersection Summary		-				× 1	

Queue shown is maximum after two cycles.

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	-	+	7	*	+	٤	3	*	1	6	*	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	1	↑ 1→		٢	↑ Ъ			4			4	_
Volume (vph)	5	1585	5	140	805	5	25	5	140	5	5	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	1.00			0.89			0.95	
Flt Protected	0.95	1.00		0.95	1.00			0.99			0.98	
Satd. Flow (prot)	1770	3538		1770	3536			1643			1750	
Flt Permitted	0.95	1.00		0.95	1.00			0.96			0.91	
Satd. Flow (perm)	1770	3538		1770	3536			1581			1619	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	1668	5	147	847	5	26	5	147	5	5	5
RTOR Reduction (vph)	0	0	0	0	0	0	0	115	0	0	4	0
Lane Group Flow (vph)	5	1673	0	147	852	0	0	63	0	0	11	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	-
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)	0.8	34.5		4.0	37.7			7.6			7.6	
Effective Green, g (s)	1.8	35.5		5.0	38.7			8.6			8.6	
Actuated g/C Ratio	0.03	0.61		0.09	0.67			0.15			0.15	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	55	2162		152	2355			234			240	1
v/s Ratio Prot	0.00	c0.47		c0.08	0.24							
v/s Ratio Perm								c0.04			0.01	
v/c Ratio	0.09	0.77		0.97	0.36			0.27			0.04	
Uniform Delay, d1	27.4	8.3		26.5	4.3			22.0			21.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.7	1.8		62.4	0.1			0.6			0.1	
Delay (s)	28.1	10.1		88.9	4.4			22.6			21.3	
Level of Service	С	В		F	А			С			С	
Approach Delay (s)		10.2			16.8			22.6			21.3	
Approach LOS		В			В			С			С	
Intersection Summary												
HCM Average Control Delay			13.3	H	CM Leve	of Service	e		В			
HCM Volume to Capacity ratio			0.70									
Actuated Cycle Length (s)			58.1	S	um of los	t time (s)			9.0			
Intersection Capacity Utilization	1		73.0%	IC	ULevel	of Service			С			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 20: Davey Street & MD 214 West

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	٠	-	1	+	1	t	1	4	+	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	_
Lane Group Flow (vph)	103	2383	263	1186	268	279	217	134	624	
v/c Ratio	0.33	1.12	1.12	0.52	1.10	0.40	0.43	1.07	0.86	
Control Delay	9.6	88.9	135.8	14.1	149.6	53.6	40.3	163.2	61.8	
Queue Delay	0.0	11.4	0.0	2.7	0.0	0.0	0.0	0.0	0.0	
Total Delay	9.6	100.3	135.8	16.8	149.6	53.6	40.3	163.2	61.8	
Queue Length 50th (ft)	27	~1355	~247	299	~154	125	154	~146	271	
Queue Length 95th (ft)	43	#1413	#436	354	#251	172	234	#288	347	
Internal Link Dist (ft)		307		415		726			986	
Turn Bay Length (ft)	200		175		350		575	200		
Base Capacity (vph)	315	2126	235	2294	243	739	503	125	763	
Starvation Cap Reductn	0	48	0	955	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.33	1.15	1.12	0.89	1.10	0.38	0.43	1.07	0.82	

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

Synchro 7 - Report Page 5

291

	٠	-	7	1	+	*	1	1	1	1	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	↑ T→		7	† Ъ	_	ካካ	^	1	7	41	_
Volume (vph)	100	1930	380	255	1020	130	260	270	210	130	370	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	0.5	0.0		0.5	0.0		0.5	1.0	0.5	0.5	1.0	
Lane Util. Factor	1.00	0.95		1.00	0.95		0.97	0.95	1.00	1.00	0.95	
Frt	1.00	0.98		1.00	0.98		1.00	1.00	0.85	1.00	0.94	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	3452		1770	3479		3433	3539	1583	1770	3333	
Flt Permitted	0.18	1.00		0.04	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	343	3452		82	3479		3433	3539	1583	1770	3333	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Growth Factor (vph)	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%
Adj, Flow (vph)	103	1991	392	263	1052	134	268	279	217	134	382	242
RTOR Reduction (vph)	0	11	0	0	7	0	0	0	13	0	68	(
Lane Group Flow (vph)	103	2372	0	263	1179	0	268	279	204	134	556	(
Turn Type	pm+pt	NA	-	pm+pt	NA		Prot	NA	pm+ov	Prot	NA	_
Protected Phases	1	6		5	2		3	8	5	7	4	
Permitted Phases	6			2	-			, in the second se	8			
Actuated Green, G (s)	92.9	87.0		103.0	93.6		7.5	26.5	39.0	7.5	26.5	
Effective Green, g (s)	98.9	91.0		106.0	97.6		10.5	29.5	45.0	10.5	29.5	
Actuated g/C Ratio	0.67	0.61		0.71	0.66		0.07	0.20	0.30	0.07	0.20	
Clearance Time (s)	3.5	4.0		3.5	4.0		3.5	4.0	3.5	3.5	4.0	
Vehicle Extension (s)	2.5	5.0		2.5	5.0		2.5	2.5	2.5	2.5	2.5	
Lane Grp Cap (vph)	314	2115		235	2287		243	703	480	125	662	
v/s Ratio Prot	0.02	c0.69		c0.12	0.34		c0.08	0.08	0.04	0.08	c0.17	
v/s Ratio Perm	0.20			0.68					0.08			
v/c Ratio	0.33	1.12		1.12	0.52		1.10	0.40	0.43	1.07	0.84	
Uniform Delay, d1	10.6	28.8		55.3	13.2		69.0	51.8	41.4	69.0	57.2	
Progression Factor	0.99	0.99		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	61.7		94.5	0.4		88.0	0.3	0.4	101.1	9.0	
Delay (s)	11.0	90.3		149.8	13.6		157.0	52.0	41.9	170.1	66.3	
Level of Service	В	F		F	В		F	D	D	F	E	
Approach Delay (s)		87.0			38.3			86.0			84.6	
Approach LOS		F			D			F			F	
Intersection Summary												
HCM Average Control Delay			73.6	H	CM Level	of Servic	e		E			
HCM Volume to Capacity ratio	0		1.01									
Actuated Cycle Length (s)			148.5	S	um of lost	time (s)			2.0			
Intersection Capacity Utilization	on		116.0%		U Level)		н			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 90: Addison Rd. & MD 214 West

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

Lane Group EBT WBL WBT NBL Lane Group Flow (vph) 2331 126 1363 263 v/c Ratio 0.97 0.86 0.49 0.87 Control Delay 34.7 111.0 6.0 75.3 Queue Delay 85.8 0.0 0.3 0.0 Total Delay 120.5 111.0 6.3 75.3 Queue Length 50th (ft) 1083 124 218 200 Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Turn Bay Length (ft) 175 5 5 Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 1.20 0.86		-+	1	+	1	
v/c Ratio 0.97 0.86 0.49 0.87 Control Delay 34.7 111.0 6.0 75.3 Queue Delay 85.8 0.0 0.3 0.0 Total Delay 120.5 111.0 6.3 75.3 Queue Length 50th (ft) 1083 124 218 200 Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Turn Bay Length (ft) 175 175 Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Lane Group	EBT	WBL	WBT	NBL	
v/c Ratio 0.97 0.86 0.49 0.87 Control Delay 34.7 111.0 6.0 75.3 Queue Delay 85.8 0.0 0.3 0.0 Total Delay 120.5 111.0 6.3 75.3 Queue Length 50th (ft) 1083 124 218 200 Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Turn Bay Length (ft) 175 175 Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Lane Group Flow (vph)	2331	126	1363	263	
Queue Delay 85.8 0.0 0.3 0.0 Total Delay 120.5 111.0 6.3 75.3 Queue Length 50th (ft) 1083 124 218 200 Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Turn Bay Length (ft) 175 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0		0.97	0.86	0.49	0.87	
Total Delay 120.5 111.0 6.3 75.3 Queue Length 50th (ft) 1083 124 218 200 Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Turn Bay Length (ft) 175 175 Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Control Delay	34.7	111.0	6.0	75.3	
Queue Length 50th (ft) 1083 124 218 200 Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Turn Bay Length (ft) 175 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Delay	85.8	0.0	0.3	0.0	
Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Tum Bay Length (ft) 175 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Total Delay	120.5	111.0	6.3	75.3	
Queue Length 95th (ft) #1347 #250 255 #343 Internal Link Dist (ft) 415 817 328 Tum Bay Length (ft) 175 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Queue Length 50th (ft)	1083	124	218	200	
Turn Bay Length (ft) 175 Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	and the second se	#1347	#250	255	#343	
Turn Bay Length (ft) 175 Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0	Internal Link Dist (ft)	415		817	328	
Base Capacity (vph) 2445 146 2846 333 Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0			175			
Starvation Cap Reductn 495 0 725 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0		2445	146	2846	333	
Storage Cap Reductn 0 0 0 0		495	0	725	0	
Storage Cap Reductn 0 0 0 0	Spillback Cap Reductn	0	0	0	0	
		0	0	0	0	
	A cost of the second	1.20	0.86	0.64	0.79	

Queue shown is maximum after two cycles.

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	-+	7	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† ‡		۲	^	Y			
Volume (vph)	2130	85	120	1295	85	165		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0		4.0	4.0	4.0			
Lane Util. Factor	0.95		1.00	0.95	1.00			
Frt	0.99		1.00	1.00	0.91			
Fit Protected	1.00		0.95	1.00	0.98			
Satd. Flow (prot)	3519		1770	3539	1668			
Flt Permitted	1.00		0.95	1.00	0.98			
Satd. Flow (perm)	3519		1770	3539	1668			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	2242	89	126	1363	89	174		
RTOR Reduction (vph)	2	0	0	0	48	0		
Lane Group Flow (vph)	2329	0	126	1363	215	0		
Turn Type	NA		Prot	NA	NA			
Protected Phases	4		3	8	2			
Permitted Phases								
Actuated Green, G (s)	99.6		12.0	115.6	22.1			
Effective Green, g (s)	99.6		12.0	115.6	22.1			
Actuated g/C Ratio	0.68		0.08	0.79	0.15			
Clearance Time (s)	4.0		4.0	4.0	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	2406		146	2808	253			
v/s Ratio Prot	c0.66		c0.07	0.39	c0.13			
v/s Ratio Perm								
v/c Ratio	0.97		0.86	0.49	0.85			
Uniform Delay, d1	21.6		66.0	5.1	60.2			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	11.7		37.5	0.1	23.1			
Delay (s)	33.3		103.5	5.2	83.3			
Level of Service	С		F	А	F			
Approach Delay (s)	33.3			13.5	83.3			
Approach LOS	С			В	F			
Intersection Summary								
HCM Average Control Dela	iy		29.3	Ĥ	CM Level	of Service	С	
HCM Volume to Capacity ra			0.94					
Actuated Cycle Length (s)			145.7	S	um of lost	time (s)	12.0	
Intersection Capacity Utiliza	ation		93.1%	IC	U Level o	of Service	F	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 95: Addison Metro Station & MD 214 West

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	,	+	1	+	t	1	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	
Lane Group Flow (vph)	5	2410	53	1479	110	48	
v/c Ratio	0.06	0.87	0.46	0.50	0.53	0.47	
Control Delay	65.4	14.7	73.7	3.8	42.3	61.9	
Queue Delay	0.0	0.4	0.0	0.1	0.0	0.0	
Total Delay	65.4	15.1	73.7	4.0	42.3	61.9	
Queue Length 50th (ft)	4	595	41	107	45	29	
Queue Length 95th (ft)	20	907	#112	279	114	77	
Internal Link Dist (ft)		817		861	324	349	
Turn Bay Length (ft)	225		250				
Base Capacity (vph)	82	3128	115	3202	438	244	
Starvation Cap Reductn	0	258	0	563	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.06	0.84	0.46	0.56	0.25	0.20	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

	٢	-	~	1	+	*	1	1	1	1	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	1	41		1	† Ъ		10010	4			4	
Volume (vph)	5	2270	20	50	1400	5	5	0	100	30	5	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	1		3.0			3.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00			1.00	
Frt	1.00	1.00		1.00	1.00			0.87			0.97	
Fit Protected	0.95	1.00		0.95	1.00			1.00			0.97	
Satd. Flow (prot)	1770	3535		1770	3537			1619			1747	
Flt Permitted	0.95	1.00		0.95	1.00			0.99			0.53	
Satd. Flow (perm)	1770	3535		1770	3537			1604			952	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	2389	21	53	1474	5	5	0	105	32	5	11
RTOR Reduction (vph)	0	0	0	0	0	0	0	45	0	0	8	0
Lane Group Flow (vph)	5	2410	0	53	1479	0	0	65	0	0	40	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2	_		6		
Actuated Green, G (s)	0.7	90.9		4.5	94.7		-	10.4			10.4	
Effective Green, g (s)	1.7	91.9		5.5	95.7			11.4			11.4	
Actuated g/C Ratio	0.01	0.78		0.05	0.81			0.10			0.10	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	26	2758	-	83	2873			155			92	-
v/s Ratio Prot	0.00	c0.68		c0.03	0.42							
v/s Ratio Perm		100033						0.04			c0.04	
v/c Ratio	0.19	0.87		0.64	0.51			0.42			0.43	
Uniform Delay, d1	57.4	8.9		55.2	3.6			50.1			50.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	3.6	3.4		15.0	0.2			1.8			3.3	
Delay (s)	61.0	12.3		70.2	3.7			51.9			53.4	
Level of Service	E	В		E	А			D			D	
Approach Delay (s)		12.4			6.0			51.9			53.4	
Approach LOS		В			А			D			D	
Intersection Summary										_		
HCM Average Control Dela			11.6	- H	CM Leve	of Servic	е		В			
HCM Volume to Capacity ra	atio		0.82									
Actuated Cycle Length (s)			117.8		um of los				9.0			
Intersection Capacity Utiliza	ation		79.3%	IC	U Level	of Service	F		D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 100: Cabin Branch Rd/Soper Ln & MD 214 West

2035_PM_Road_Diet 5:00 pm 5/3/2012 2035_PM_Road_Diet CJD

Appendix 6 Build Scenario #2 Traffic Analysis and Queuing Reports

						AM Peak	μ μ	Trips
and Use	ITECode	Size	Units	Entering AM	Exiting AM	Hour Trips.	Entering AM	Exiting AM
Low Rise Apartments	221	192	DWS	0.21	0,79	8	20	74
Single Family Residential	210	1308	Dus	0.25	0.75	-575	IEZ	æ
Furniture Store	890	76,400	th	0.69	0.31	10	ä	4
Shopping Center	820	27,500	5	19:0	6E'0	105	5	41
Middle School	522	120	Employees	0.54	0,45	516	343	HEZ
Total						1.774	868	1106

						PM Peak	E.	Trips
and Use	ITE Code	Size	Units	Entering PM	Exiting PM	Hour Trips	Hour Trips Entering PM	Exiting PM
Low Rise Apartments	121	192	Date	23.0	0,35	120	78	42
Single Family Residential	210	1306	DAS	0.63	0.37	1,053	670	395
Furmiture Store	890	76,400	SF.	0.48	0.52	34	27	18
Shopping Center	820	52,500	SF	0.49	0.51	413	202	211
Middle School	522	120	Employees	0.50	0.50	235	116	115
[otal						1,863	1,083	780

4
oncept
Ŭ
3
Mixed
ê.
£
Scena
SED2

						AM Peak	E	Trips
and Use	ITE Code	Size	Units	Entering AM	Exiting AM	Hour Trips	Entering AM	Exiting AM
3 Story Flat	220	596	DUS	0.20	0,80	295	59	237
Single Family Residential	210	17	DUS	0.25	0.75	22	5	15
Shopping Center	820	223,500	5	0.61	65.0	248	151 -	26
General Office building	710	376,500	SF	0,88	0.12	245	477	55
Residential	220	105	DUS	0,20	080	55	11	44
Uve/Work Unit	220	20	2002	0.20	0,80	35	-90	30
2 Story townhouse	230	19	DUS	0.17	0.83	15	01	15
lotal						1.257	171	536

All other trip purposes (including unidentified work trips) Work trip reduction for all modes (22%) Reduction for other trips (17%)

55 471 -14 -80 **442**

Work trips

477 244 4

536

anal auto trips

574

7

			fed work trips)								
		Work trips	All other trip purposes (including unidentified work trips)	Work trip reduction for all modes (2236)	Reduction for other trips (17%)	Final auto trips			Model Trips (2035) Total Trips/Model Trips (2035)	Md	0.88
Dut	1,161	415	745	哥	-127	543			Total Trips	AM	0.81
£	572	5	557	-19	-151	205			ps (2035)	Mid	4,854
								5	ModelTri	AM	3,742
ps Exiting PM	12.2	20	556	415	26	20	14	1,161	Total Trips (2035)	PM	1252
PM Peak Trips Hour Trips Entering PM Exiting PM	225	13	994	85	49	36	29	212	Total Trip	ANA	3,014
PM Peak Hour Trips	345	21	1,090	005	75	R	43	2,133	Trips	MA	1,745
Exiting PM	0.35	0.37	0,51	0.83	0.35	0.35	0,33.		AECOMITrips	AM	1,016
Entering PM	0.65	0.63	0.49	0.17	0.65	59'0	0.67		5 Growth	444	7.507
Units	DUS	DWS	SF.	5	DUs	DUS	Ditte		2011-2035 Growth	MA	1997
Size	596	17	223,500	376,500	105	20	13		Trips	PM	1,546
ITE Code	220	210	520.	110	220	220	230		2011 Trips	AM	1,472
Land Use	3 Story Flat	Single Family Residential	Shopping Center	General Office building	Residential	Bve/Work Unit	2 Story townhouse	Total			

	Reduction for pedestrian, bicycle, HDV 2	
780	-133	
280'1.	-184	
	1,083 780	1.083 780 780 782 782 733 Reduction for padestrian, bicycle, HDV 2

	Reduction for pedestrian, bicycle, HDV 2+, HDV 3+ and transit mode share (17%)	Final auto tripo	
780	-133	888	
280'1.	-184	668	

- non-	TBD	
-184	133	Reduction for pedestrian, bicycle, HDV 2+, HOV 3+ and
663	855	Final auto trips

In this be Antil 1.7 Antil Service fusioned in Contrants and the tot
sea projection

Central Avenue – Metro Blue Line	Corridor TOD	Implementation	Project Mobility Study
Central Avenue Interio Diae Line	Cornuor TOD	implementation	Troject wiobility Study

	+	1	+	1	t	1	1	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	126	68	52	21	463	16	558	
v/c Ratio	0.33	0.20	0.11	0.04	0.22	0.03	0.27	
Control Delay	13.6	13.8	6.1	5.7	5.7	5.5	5.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.6	13.8	6.1	5.7	5.7	5.5	5.9	
Queue Length 50th (ft)	16	10	1	2	23	1	29	
Queue Length 95th (ft)	56	38	19	10	50	8	61	
Internal Link Dist (ft)	623		482		695		523	
Turn Bay Length (ft)				150		125		
Base Capacity (vph)	1311	1223	1564	780	3330	855	3316	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.10	0.06	0.03	0.03	0.14	0.02	0.17	

Hill Road and Morgan Boulevard Road Diet 230: Garrett Morgan & Ridgefield

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

	٠	-	>	1	+		1	1	1	4	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	LUL	4	EDIT	1	1	TTDIT.	1	† 1 ₂	TIDIT	5002	14	UDI
Volume (vph)	90	5	25	65	5	45	20	425	15	15	500	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	1000	5.0	1000	5.0	5.0	10.00	5.0	5.0		5.0	5.0	1000
Lane Util. Factor		1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt		0.97		1.00	0.86		1.00	0.99		1.00	0.99	
Flt Protected		0.96		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1745		1770	1610		1770	3521		1770	3509	
Flt Permitted		0.75		0.68	1.00		0.44	1.00		0.49	1.00	
Satd. Flow (perm)		1349		1260	1610		825	3521		905	3509	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	95	5	26	68	5	47	21	447	16	16	526	32
RTOR Reduction (vph)	0	16	0	0	38	0	0	2	0	0	4	0
Lane Group Flow (vph)	0	110	0	68	14	0	21	461	0	16	554	Ő
Turn Type	Perm	NA		Perm	NA	, , , , , , , , , , , , , , , , , , ,	Perm	NA		Perm	NA	
Protected Phases	1 onn	8		1 onn	4		1 onn	6		1 Gim	2	
Permitted Phases	8	ç		4			6	U		2	-	
Actuated Green, G (s)		6.5		6.5	6.5		17.1	17.1		17.1	17.1	
Effective Green, g (s)		6.5		6.5	6.5		17.1	17.1		17.1	17.1	
Actuated g/C Ratio		0.19		0.19	0.19		0.51	0.51		0.51	0.51	
Clearance Time (s)		5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0		3.0	3.0		6.0	6.0		6.0	6.0	
Lane Grp Cap (vph)	_	261	_	244	311	_	420	1792		461	1786	
v/s Ratio Prot		201			0.01		120	0.13		101	c0.16	
v/s Ratio Perm		c0.08		0.05			0.03			0.02		
v/c Ratio		0.42		0.28	0.05		0.05	0.26		0.03	0.31	
Uniform Delay, d1		11.9		11.6	11.0		4.2	4.7		4.1	4.8	
Progression Factor		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		1.1		0.6	0.1		0.1	0.2		0.1	0.3	
Delay (s)		13.0		12.2	11.1		4.3	4.9		4.2	5.1	
Level of Service		В		В	В		A	A		А	A	
Approach Delay (s)		13.0			11.7			4.9			5.1	
Approach LOS		В			В			А			A	
Intersection Summary												
HCM Average Control Delay			6.4	H	CM Level	of Servic	е		A			
HCM Volume to Capacity ratio			0.34									
Actuated Cycle Length (s)			33.6	S	um of lost	t time (s)			10.0			
Intersection Capacity Utilization	1		38.4%	IC	U Level o	of Service	6		A			
Analysis Period (min)			15									
c Critical Lane Group												

Hill Road and Morgan Boulevard Road Diet

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
Lane Group Flow (vph)	337	68	363	358	63	126	
v/c Ratio	0.28	0.12	0.53	0.15	0.21	0.34	
Control Delay	11.7	4.2	21.3	3.7	19.1	7.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.7	4.2	21.3	3.7	19.1	7.5	
Queue Length 50th (ft)	32	0	43	15	14	0	
Queue Length 95th (ft)	59	19	#100	31	43	35	
Internal Link Dist (ft)	667			1365	395		
Turn Bay Length (ft)		100	150				
Base Capacity (vph)	1750	817	679	2762	1350	1237	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.19	0.08	0.53	0.13	0.05	0.10	

Queue shown is maximum after two cycles.

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

240: Morgan Metro	o Park a	and Rid	e & Ga	arrett A	Morg	an		7/30/201
	×	2	~	×	3	4		
Movement	SET	SER	NWL	NWT	NEL	NER		
ane Configurations	11	1	ሻሻ	^	۲	1		
Volume (vph)	320	65	345	340	60	120		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
ane Util. Factor	0.95	1.00	0.97	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Fit Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	3433	3539	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	3433	3539	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	337	68	363	358	63	126		
RTOR Reduction (vph)	0	45	0	0	0	110		
Lane Group Flow (vph)	337	23	363	358	63	16		
Turn Type	NA	custom	Prot	NA	NA	Perm		
Protected Phases			1	6	4			
Permitted Phases	2	2				4		
Actuated Green, G (s)	14.3	14.3	8.4	27.7	5.5	5.5		
Effective Green, g (s)	14.3	14.3	8.4	27.7	5.5	5.5		
Actuated g/C Ratio	0.33	0.33	0.19	0.64	0.13	0.13		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	6.0	6.0	3.0	6.0	3.0	3.0		
Lane Grp Cap (vph)	1171	524	668	2269	225	202		
v/s Ratio Prot			c0.11	0.10	c0.04			
v/s Ratio Perm	c0.10	0.01				0.01		
v/c Ratio	0.29	0.04	0.54	0.16	0.28	0.08		
Uniform Delay, d1	10.7	9.8	15.7	3.1	17.1	16.6		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.4	0.1	0.9	0.1	0.7	0.2		
Delay (s)	11.1	9.9	16.6	3.2	17.7	16.8		
Level of Service	В	А	В	А	В	В		
Approach Delay (s)	10.9			9.9	17.1			
Approach LOS	В			А	В			
Intersection Summary								
HCM Average Control Dela	ay		11.3	н	CM Leve	of Service	В	
HCM Volume to Capacity n			0.36					
Actuated Cycle Length (s)			43.2	S	um of los	t time (s)	15.0	
Intersection Capacity Utilization	ation		35.4%			of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

Hill Road and Morgan Boulevard Road Diet 240: Morgan Metro Park and Ride & Garrett A Morg

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

Hill Road and Morgan Boulevard Road Diet 250: Ritchie/Garrett A Morgan & MD 214 West

250: Ritchie/Garret					t					-	7/30/2012
	٠	+	1	+	1	t	1	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	1
Lane Group Flow (vph)	132	964	158	2474	442	289	289	163	189	158	
v/c Ratio	0.40	0.37	0.99	1.04	0.63	0.76	0.18	0.32	0.69	0.36	
Control Delay	67.3	22.7	137.6	66.4	58.2	69.2	0.3	57.8	73.0	15,7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	67.3	22.7	137.6	66.4	58.2	69.2	0.3	57.8	73.0	15.7	
Queue Length 50th (ft)	63	194	81	~948	206	270	0	74	178	47	
Queue Length 95th (ft)	98	284	#159	#1260	245	351	0	105	252	68	
Internal Link Dist (ft)		1283		929		896			1365		
Turn Bay Length (ft)	350		600		350		200	500			
Base Capacity (vph)	328	2612	160	2388	961	522	1583	961	522	437	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.37	0.99	1.04	0.46	0.55	0.18	0.17	0.36	0.36	
Intersection Summary											

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

	٠	-	7	1	+	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻሻ	441		ሻሻ	**		ሻሻ	+	1	ሻሻ	+	1
Volume (vph)	125	790	125	150	2200	150	420	275	275	155	180	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	0.97	0.91		0.97	0.91		0.97	1.00	1.00	0.97	1.00	1.00
Frt	1.00	0.98		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	4981		3433	5037		3433	1863	1583	3433	1863	1583
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	4981		3433	5037		3433	1863	1583	3433	1863	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	132	832	132	158	2316	158	442	289	289	163	189	158
RTOR Reduction (vph)	0	10	0	0	4	0	0	0	0	0	0	52
Lane Group Flow (vph)	132	954	0	158	2470	0	442	289	289	163	189	106
Turn Type	Prot	NA		Prot	NA		Split	NA	Free	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4	11.00	3	3	1
Permitted Phases	-	-							Free			3
Actuated Green, G (s)	12.3	75.3		5.0	68.0		28.5	28.5	150.0	20.2	20.2	32.5
Effective Green, g (s)	14.3	78.3		7.0	71.0		30.5	30.5	150.0	22.2	22.2	36.5
Actuated g/C Ratio	0.10	0.52		0.05	0.47		0.20	0.20	1.00	0.15	0.15	0.24
Clearance Time (s)	5.0	6.0		5.0	6.0		5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0		2.5	2.5		2.5	2.5	3.0
Lane Grp Cap (vph)	327	2600		160	2384	_	698	379	1583	508	276	385
v/s Ratio Prot	c0.04	0.19		0.05	c0.49		0.13	c0.16	1000	0.05	c0.10	0.03
v/s Ratio Perm	00.01	0.10		0.00	00.10		0.10	00.10	0.18	0.00	00.10	0.04
v/c Ratio	0.40	0.37		0.99	1.04		0.63	0.76	0.18	0.32	0.68	0.27
Uniform Delay, d1	63.8	21.2		71.5	39.5		54.6	56.3	0.0	57.2	60.6	46.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.8	0.4		67.9	28.6		1.6	8.4	0.3	0.3	6.3	0.4
Delay (s)	64.7	21.6		139.4	68.1		56.3	64.8	0.3	57.4	66.9	46.4
Level of Service	E	C		F	E		E	E	A	E	E	D
Approach Delay (s)	-	26.8			72.4		-	42.8	-		57.5	
Approach LOS		C			E			D			E	
Intersection Summary					~							_
HCM Average Control Dela	NV.		55.7	Ĥ	CMLevel	of Servic	e		E			-
HCM Volume to Capacity r			0.85		SIN LOVOI	51 551 415			-			
Actuated Cycle Length (s)	400		150.0	ç	um of losi	time (s)			12.0			
Intersection Capacity Utiliza	ation		84.8%			of Service			E			
Analysis Period (min)			15		O LOVEL	I COLVICE			L			

Hill Road and Morgan Boulevard Road Diet 250: Ritchie/Garrett A Morgan & MD 214 West

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

	٠	-	1	+	*	1	1	1	1	+	1
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	74	753	95	2358	205	121	158	47	172	192	358
v/c Ratio	0.43	0.26	0.20	0.79	0.21	0.64	0.40	0.22	0.71	0.38	0.76
Control Delay	27.1	17.0	11.4	28.3	7,9	78.3	63.4	16.8	76.4	58.6	25.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.1	17.0	11.4	28.3	7.9	78.3	63.4	16.8	76.4	58.6	25.9
Queue Length 50th (ft)	23	124	30	618	32	126	80	0	179	94	78
Queue Length 95th (ft)	81	198	69	#963	97	195	114	39	256	129	190
Internal Link Dist (ft)		1835		2003			924			1116	
Turn Bay Length (ft)	300		225		325	350		225	300		150
Base Capacity (vph)	171	2951	472	2981	980	413	866	431	413	857	609
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.26	0.20	0.79	0.21	0.29	0.18	0.11	0.42	0.22	0.59

Hill Road and Morgan Boulevard Road Diet 260: Shady Glen Dr/Hill Rd & MD 214 West

ntersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

	٠	-	7	1	+	*	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	4 † ‡	-	٦	^	1	٦	41	1	۲	↑ Ъ	1
Volume (vph)	70	675	40	90	2240	195	130	135	45	220	125	340
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	4.0	3.0	3.0	3.0
Lane Util. Factor	1.00	0.91		1.00	0.91	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	0.99	1.00	0.95	0.98	1.00
Satd. Flow (prot)	1770	5043		1770	5085	1583	1610	3373	1583	1610	3338	1583
Flt Permitted	0.05	1.00		0.32	1.00	1.00	0.95	0.99	1.00	0.95	0.98	1.00
Satd. Flow (perm)	86	5043		595	5085	1583	1610	3373	1583	1610	3338	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	74	711	42	95	2358	205	137	142	47	232	132	358
RTOR Reduction (vph)	0	3	0	0	0	52	0	0	42	0	0	232
Lane Group Flow (vph)	74	750	0	95	2358	153	121	158	5	172	192	126
Turn Type	pm+pt	NA	_	pm+pt	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	1	6		5	2	1 onn	3	3	1 Onth	4	4	(on
Permitted Phases	6	U		2	-	2		U	3			4
Actuated Green, G (s)	92.8	84.6		93.4	84.9	84.9	14.5	14.5	14.5	19.4	19.4	19.4
Effective Green, g (s)	96.8	87.6		97.4	87.9	87.9	17.5	17.5	16.5	22.4	22.4	22.4
Actuated g/C Ratio	0.65	0.58		0.65	0.59	0.59	0.12	0.12	0.11	0.15	0.15	0.15
Clearance Time (s)	5.0	6.0		5.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0	5.0	2.5	2.5	2.5	2.5	2.5	2.5
Lane Grp Cap (vph)	170	2945		469	2980	928	188	394	174	240	498	236
v/s Ratio Prot	c0.03	0.15		0.01	c0.46	020	c0.08	0.05	114	c0.11	0.06	200
v/s Ratio Perm	0.25	0.10		0.12	00.40	0.10	00.00	0.00	0.00	00.11	0,00	0.08
v/c Ratio	0.44	0.25		0.20	0.79	0.17	0.64	0.40	0.03	0.72	0.39	0.53
Uniform Delay, d1	24.2	15.2		10.0	24.0	14.2	63.3	61.4	59.6	60.8	57.6	59.0
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.8	0.2		0.2	2.2	0.4	6.5	0.5	0.1	9.1	0.4	1.8
Delay (s)	26.0	15.5		10.2	26.2	14.6	69.8	61.9	59.7	69.9	58.0	60.8
Level of Service	C	B		B	C	14.0 B	E	E	E	E	E	E
Approach Delay (s)	Ŭ	16.4		0	24.7		-	64.5	-		62.2	-
Approach LOS		B			C			E			E	
2		-			-			-			-	
Intersection Summary		_	20.0	- u	OMI avai	of Conde			С			
HCM Average Control Dela			32.0 0.72	н	CIVI LEVE	of Servic	NG		U			
HCM Volume to Capacity n	allo				um of last	time (-)			0.0			
Actuated Cycle Length (s)	ation		150.0		um of los				9.0			
Intersection Capacity Utiliza	auon		81.0%	IC	U Level (of Service	1		D			
Analysis Period (min) c Critical Lane Group			15									

Hill Road and Morgan Boulevard Road Diet 260: Shady Glen Dr/Hill Rd & MD 214 West

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

	+	7	+	*	t	1	+	1	
Lane Group	EBT	EBR	WBT	WBR	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	10	16	258	95	406	74	468	5	
v/c Ratio	0.02	0.04	0.71	0.19	0.37	0.08	0.45	0.01	
Control Delay	13.4	7.3	29.1	4.8	8.4	2.4	9.3	4.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.4	7.3	29.1	4.8	8.4	2.4	9.3	4.6	
Queue Length 50th (ft)	2	0	73	0	62	0	76	0	
Queue Length 95th (ft)	11	10	138	25	142	16	173	4	
Internal Link Dist (ft)	480		402		925		554		
Turn Bay Length (ft)						250		100	
Base Capacity (vph)	606	595	501	645	1085	964	1040	936	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.03	0.51	0.15	0.37	0.08	0.45	0.01	

Hill Road and Morgan Boulevard Road Diet

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

270: Hill Rd & Willow		u									115	30/2012
	٠	-+	7	*	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4	1	-	4	1	-	÷.	1		4	- 1
Volume (vph)	5	5	15	235	10	90	10	375	70	40	405	Ę
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Lane Util. Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Frt		1.00	0.85		1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected		0.98	1.00		0.95	1.00		1.00	1.00		1.00	1.00
Satd. Flow (prot)		1817	1583		1778	1583		1860	1583		1854	1583
Flt Permitted		0.88	1.00		0.73	1.00		0.99	1.00		0.95	1.00
Satd. Flow (perm)		1639	1583		1356	1583		1841	1583		1762	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	5	16	247	11	95	11	395	74	42	426	5
RTOR Reduction (vph)	0	0	12	0	0	69	0	0	30	0	0	2
Lane Group Flow (vph)	0	10	4	0	258	26	0	406	44	0	468	3
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		e
Actuated Green, G (s)		15.4	15.4		15.4	15.4		33.7	33.7		33.7	33.7
Effective Green, g (s)		15.4	15.4		15.4	15.4		33.7	33.7		33.7	33.7
Actuated g/C Ratio		0.27	0.27		0.27	0.27		0.59	0.59		0.59	0.59
Clearance Time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)		442	427	A	366	427		1087	934		1040	934
v/s Ratio Prot												
v/s Ratio Perm		0.01	0.00		c0.19	0.02		0.22	0.03		c0.27	0.00
v/c Ratio		0.02	0.01		0.70	0.06		0.37	0.05		0.45	0.00
Uniform Delay, d1		15.3	15.3		18.8	15.5		6.2	4.9		6.5	4.8
Progression Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2		0.0	0.0		6.1	0.1		1.0	0.1		1.4	0.0
Delay (s)		15.3	15.3		24.9	15.5		7.1	5.0		7.9	4.8
Level of Service		В	В		С	В		А	A		Α	A
Approach Delay (s)		15.3			22.4			6.8			7.9	
Approach LOS		В			С			А			A	
Intersection Summary												
HCM Average Control Delay			11.5	H	CM Level	of Service	Э		В			
HCM Volume to Capacity ratio			0.53									
Actuated Cycle Length (s)			57.1	S	um of lost	t time (s)			8.0			
Intersection Capacity Utilization	1		74.0%	IC	U Level	of Service			D			
Analysis Period (min)			15									

Hill Road and Morgan Boulevard Road Diet

2035_AM_Morgan_Blvd 7:00 am 5/3/2012 2035_AM_Morgan_Blvd CJD

2035 PM

	+	1	+	1	t	1	Ŧ	
Lane Group	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	32	47	31	26	626	21	458	
v/c Ratio	0.08	0.10	0.07	0.04	0.25	0.04	0.18	
Control Delay	10.7	13.9	8.4	4.4	3.9	4.4	3.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	10.7	13.9	8.4	4.4	3.9	4.4	3.7	
Queue Length 50th (ft)	2	7	1	2	28	2	20	
Queue Length 95th (ft)	20	30	17	9	55	8	40	
Internal Link Dist (ft)	623		482		596		523	
Turn Bay Length (ft)				150		125		
Base Capacity (vph)	1475	1813	1585	862	3312	731	3324	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.03	0.02	0.03	0.19	0.03	0.14	

HIII Road & Morgan Boulevard Road Diet

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

2035 PM

EBL							1	1			
	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	4		٦	1+		٦	^	_	٦	↑ Ъ	_
10	5	15	45	5	25	25	540	55	20	405	30
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
	0.93		1.00	0.87		1.00	0.99		1.00	0.99	
	0.98		0.95	1.00		0.95	1.00		0.95	1.00	
	1708									3502	
										1.00	
										3502	
0.95		0.95			0.95			0.95			0.95
											32
											0
		0			0			0			0
		_									
- Griff			1 only			1 only			1.0111		
8	-		4			6			2	-	
-	3.6			3.6			18.6			18.6	
						6.0					
-					_	525					
						010			110		
	0.01		c0.03			0.03			0.03		
				0.04			0.31			0.22	
						0.1			0.1	0.2	
							A		А		
							3.7				
	В			В			A			A	
		4.5	H	CM Level	of Servic	е		A			
		0.29									
		32.2	Su	im of lost	time (s)			10.0			
								A			
	0.95 11 0 0 Perm 8	5.0 1.00 0.93 0.98 1708 0.87 1517 0.95 0.95 11 5 0 14 0 18 Perm NA 8 8 3.6 3.6 3.6 0.11 5.0 3.0 170 0.01 0.10 12.9 1.00 0.3 13.1 B 13.1 B	5.0 1.00 0.93 0.98 1708 0.87 1517 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.01 0.01 0.03 0.3 13.1 B 13.1 B 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 1.	5.0 5.0 1.00 1.00 0.93 1.00 0.93 1.00 0.93 1.00 0.98 0.95 1708 1770 0.87 1.00 1517 1863 0.95 0.95 0.95 11 5 16 47 0 14 0 0 0 0 14 0 0 0 0 18 0 47 Perm NA Perm 8 8 4 3.6 3.6 3.6 3.6 3.6 3.0 3.0 3.0 170 208 0.01 c0.03 0.10 0.23 1.29 13.0 1.00 1.00 1.00 0.3 0.3 0.6 13.1 13.6 B B 13.1 13.6 B 8 32.2 <t< td=""><td>5.0 5.0 5.0 1.00 1.00 1.00 0.93 1.00 0.87 0.98 0.95 1.00 1708 1770 1628 0.87 1.00 1.00 150 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.15 16 47 5 0 14 0 0 23 0 18 0 47 8 Perm NA Perm NA 8 4 4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.0 3.0 3.0 3.0 3.0 170 208 182 0.00 0.01 0.03 0.10 0.23 0.04 12.9 13.0 12.8 1.00 1.00 1.00 1.00 1.00 1.03 0.3 0.6</td><td>5.0 5.0 5.0 1.00 1.00 1.00 0.93 1.00 0.87 0.98 0.95 1.00 1708 1770 1628 0.87 1.00 1.00 1517 1863 1628 0.95 0.95 0.95 0.95 0.15 16 47 5 0 14 0 0 23 0 18 0 47 8 0 Perm NA Perm NA 8 4 8 4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.0 3.0 3.0 3.0 3.0 3.0 170 208 182 0.00 0.01 3.0 3.0 170 203 12.8 1.00 1.00 1.0 3.0 12.9 13.0 12.8 <t< td=""><td>5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.93 1.00 0.87 1.00 0.98 0.95 1.00 0.95 1708 1770 1628 1770 0.87 1.00 1.00 0.49 1517 1863 1628 909 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 0 14 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</td--><td>5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.98 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0.87 1.00 1.00 0.49 1.00 1517 1863 1628 909 3490 0.95 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 568 0 14 0 0 23 0 0 7 0 18 0 47 8 0 26 619 Perm NA Perm NA 8 4 6 6 8 6 3.6 3.6 18.6 18.6 18.6 18.6 18.6 3.6 3.6 3.6 3.6 3.6</td><td>5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.99 0.99 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0 0 0.87 1.00 1.00 0.49 1.00 1.00 1.01 1517 1863 1628 909 3490 0 0 1.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td><td>5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.93 1.00 0.87 1.00 0.99 1.00 0.98 0.95 1.00 0.95 1.00 0.95 1708 1770 1628 1770 3490 1770 0.87 1.00 0.49 1.00 0.41 1517 1863 1628 909 3490 772 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9</td><td>5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 1.00 0.95 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1707 1628 1770 3490 1770 3502 0.87 1.00 1.00 0.49 1.00 0.41 1.00 1517 1863 1628 909 3490 772 3502 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td></td></t<></td></t<>	5.0 5.0 5.0 1.00 1.00 1.00 0.93 1.00 0.87 0.98 0.95 1.00 1708 1770 1628 0.87 1.00 1.00 150 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.15 16 47 5 0 14 0 0 23 0 18 0 47 8 Perm NA Perm NA 8 4 4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.0 3.0 3.0 3.0 3.0 170 208 182 0.00 0.01 0.03 0.10 0.23 0.04 12.9 13.0 12.8 1.00 1.00 1.00 1.00 1.00 1.03 0.3 0.6	5.0 5.0 5.0 1.00 1.00 1.00 0.93 1.00 0.87 0.98 0.95 1.00 1708 1770 1628 0.87 1.00 1.00 1517 1863 1628 0.95 0.95 0.95 0.95 0.15 16 47 5 0 14 0 0 23 0 18 0 47 8 0 Perm NA Perm NA 8 4 8 4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.0 3.0 3.0 3.0 3.0 3.0 170 208 182 0.00 0.01 3.0 3.0 170 203 12.8 1.00 1.00 1.0 3.0 12.9 13.0 12.8 <t< td=""><td>5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.93 1.00 0.87 1.00 0.98 0.95 1.00 0.95 1708 1770 1628 1770 0.87 1.00 1.00 0.49 1517 1863 1628 909 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 0 14 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</td--><td>5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.98 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0.87 1.00 1.00 0.49 1.00 1517 1863 1628 909 3490 0.95 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 568 0 14 0 0 23 0 0 7 0 18 0 47 8 0 26 619 Perm NA Perm NA 8 4 6 6 8 6 3.6 3.6 18.6 18.6 18.6 18.6 18.6 3.6 3.6 3.6 3.6 3.6</td><td>5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.99 0.99 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0 0 0.87 1.00 1.00 0.49 1.00 1.00 1.01 1517 1863 1628 909 3490 0 0 1.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td><td>5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.93 1.00 0.87 1.00 0.99 1.00 0.98 0.95 1.00 0.95 1.00 0.95 1708 1770 1628 1770 3490 1770 0.87 1.00 0.49 1.00 0.41 1517 1863 1628 909 3490 772 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9</td><td>5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 1.00 0.95 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1707 1628 1770 3490 1770 3502 0.87 1.00 1.00 0.49 1.00 0.41 1.00 1517 1863 1628 909 3490 772 3502 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td></td></t<>	5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.93 1.00 0.87 1.00 0.98 0.95 1.00 0.95 1708 1770 1628 1770 0.87 1.00 1.00 0.49 1517 1863 1628 909 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 0 14 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.98 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0.87 1.00 1.00 0.49 1.00 1517 1863 1628 909 3490 0.95 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 568 0 14 0 0 23 0 0 7 0 18 0 47 8 0 26 619 Perm NA Perm NA 8 4 6 6 8 6 3.6 3.6 18.6 18.6 18.6 18.6 18.6 3.6 3.6 3.6 3.6 3.6</td> <td>5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.99 0.99 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0 0 0.87 1.00 1.00 0.49 1.00 1.00 1.01 1517 1863 1628 909 3490 0 0 1.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td> <td>5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.93 1.00 0.87 1.00 0.99 1.00 0.98 0.95 1.00 0.95 1.00 0.95 1708 1770 1628 1770 3490 1770 0.87 1.00 0.49 1.00 0.41 1517 1863 1628 909 3490 772 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9</td> <td>5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 1.00 0.95 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1707 1628 1770 3490 1770 3502 0.87 1.00 1.00 0.49 1.00 0.41 1.00 1517 1863 1628 909 3490 772 3502 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td>	5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.98 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0.87 1.00 1.00 0.49 1.00 1517 1863 1628 909 3490 0.95 0.95 0.95 0.95 0.95 0.95 11 5 16 47 5 26 26 568 0 14 0 0 23 0 0 7 0 18 0 47 8 0 26 619 Perm NA Perm NA 8 4 6 6 8 6 3.6 3.6 18.6 18.6 18.6 18.6 18.6 3.6 3.6 3.6 3.6 3.6	5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 0.99 0.99 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1770 1628 1770 3490 0 0 0.87 1.00 1.00 0.49 1.00 1.00 1.01 1517 1863 1628 909 3490 0 0 1.05 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.93 1.00 0.87 1.00 0.99 1.00 0.98 0.95 1.00 0.95 1.00 0.95 1708 1770 1628 1770 3490 1770 0.87 1.00 0.49 1.00 0.41 1517 1863 1628 909 3490 772 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.93 1.00 0.87 1.00 0.99 1.00 0.95 0.98 0.95 1.00 0.95 1.00 0.95 1.00 1708 1707 1628 1770 3490 1770 3502 0.87 1.00 1.00 0.49 1.00 0.41 1.00 1517 1863 1628 909 3490 772 3502 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

HIII Road & Morgan Boulevard Road Diet

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
Lane Group Flow (vph)	558	63	116	500	126	316	
v/c Ratio	0.39	0.09	0.29	0.25	0.35	0.59	
Control Delay	11.3	3.8	24.4	5.2	20.9	9.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	11.3	3.8	24.4	5.2	20.9	9.4	
Queue Length 50th (ft)	55	0	15	27	31	10	
Queue Length 95th (ft)	101	18	40	57	73	65	
Internal Link Dist (ft)	667			1365	395		
Turn Bay Length (ft)		100	150				
Base Capacity (vph)	1900	879	400	2581	1263	1208	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.29	0.07	0.29	0.19	0.10	0.26	

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

HIII Road & Morga 340: Morgan Metro					Mora	an		2035 PN 7/30/2012
g	×	2	~	×	3	~		
Movement	SET	SER	NWL	NWT	NEL	NER		
Lane Configurations	^	*	ሻሻ	^	۲	1		
Volume (vph)	530	60	110	475	120	300		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Lane Util. Factor	0.95	1.00	0.97	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	3433	3539	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	3433	3539	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	558	63	116	500	126	316		
RTOR Reduction (vph)	0	38	0	0	0	220		
Lane Group Flow (vph)	558	25	116	500	126	96		
Turn Type	NA		Prot	NA	NA	Perm		
Protected Phases	14,1	oustonn	1	6	4	1 onn		
Permitted Phases	2	2				4		
Actuated Green, G (s)	18.5	18.5	3.7	27.2	9.2	9.2		
Effective Green, g (s)	18.5	18.5	3.7	27.2	9.2	9.2		
Actuated g/C Ratio	0.40	0.40	0.08	0.59	0.20	0.20		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	6.0	6.0	3.0	6.0	3.0	3.0		
Lane Grp Cap (vph)	1411	631	274	2075	351	314		
v/s Ratio Prot	aur		c0.03	0.14	c0.07			
v/s Ratio Perm	c0.16	0.02				0.06		
v/c Ratio	0.40	0.04	0.42	0.24	0.36	0.30		
Uniform Delay, d1	10.0	8.5	20.3	4.6	16.1	15.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.5	0.1	1.1	0.2	0.6	0.6		
Delay (s)	10.5	8.6	21.4	4.8	16.7	16.4		
Level of Service	В	А	С	А	В	В		
Approach Delay (s)	10.3			7.9	16.5			
Approach LOS	В			А	В			
Intersection Summary								
HCM Average Control Dela	iy		11.1	н	CM Leve	of Service	В	
HCM Volume to Capacity ra			0.39					
Actuated Cycle Length (s)			46.4	S	um of los	t time (s)	15.0	
Intersection Capacity Utiliza	ation		41.6%			of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

HIII Road & Morgan Boulevard Road Diet

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

2035 PM

350: Ritchie/Garret					t						7/30/2012
	٠	+	1	+	1	t	1	4	ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	1
Lane Group Flow (vph)	211	2279	274	1474	242	258	374	284	437	142	
v/c Ratio	0.42	1.15	1.33	0.95	0.38	0.75	0.24	0.29	0.84	0.19	
Control Delay	62.1	113.8	228.7	64.0	54.2	70.5	0.4	42.0	64.6	2.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	62.1	113.8	228.7	64.0	54.2	70.5	0.4	42.0	64.6	2.5	
Queue Length 50th (ft)	99	~962	~178	509	108	242	0	112	403	1	
Queue Length 95th (ft)	145	#1265	#275	#781	141	321	0	141	498	20	
nternal Link Dist (ft)		1283		929		896			1365		
Turn Bay Length (ft)	350		600		350		200	500			
Base Capacity (vph)	504	1982	206	1545	1099	596	1583	1167	633	756	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.42	1.15	1.33	0.95	0.22	0.43	0.24	0.24	0.69	0.19	
Intersection Summary	-	-	-	-							

HIII Road & Morgan Boulevard Road Diet

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

350: Ritchie/Garrett A		0						_				_
	٠	-	7	1	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	**		ሻሻ	4 † ‡		ሻሻ	- +	1	ሻሻ	+	1
Volume (vph)	200	2010	155	260	1275	125	230	245	355	270	415	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	0.97	0.91		0.97	0.91		0.97	1.00	1.00	0.97	1.00	1.00
Frt	1.00	0.99		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	5031		3433	5017		3433	1863	1583	3433	1863	1583
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	5031		3433	5017		3433	1863	1583	3433	1863	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	211	2116	163	274	1342	132	242	258	374	284	437	142
RTOR Reduction (vph)	0	4	0	0	7	0	0	0	0	0	0	79
Lane Group Flow (vph)	211	2275	0	274	1467	0	242	258	374	284	437	63
Turn Type	Prot	NA		Prot	NA		Split	NA	Free	Split	NA	pm+ov
Protected Phases	1	6		5	2		4	4		3	3	1
Permitted Phases									Free			3
Actuated Green, G (s)	20.0	56.0		7.0	43.0		25.9	25.9	150.0	40.1	40.1	60.1
Effective Green, g (s)	22.0	59.0		9.0	46.0		27.9	27.9	150.0	42.1	42.1	64.1
Actuated g/C Ratio	0.15	0.39		0.06	0.31		0.19	0.19	1.00	0.28	0.28	0.43
Clearance Time (s)	5.0	6.0		5.0	6.0		5.0	5.0		5.0	5.0	5.0
Vehicle Extension (s)	3.0	5.0		3.0	5.0		2.5	2.5		2.5	2.5	3.0
Lane Grp Cap (vph)	504	1979		206	1539		639	347	1583	964	523	676
v/s Ratio Prot	0.06	c0.45		c0.08	0.29		0.07	c0.14		0.08	c0.23	0.01
v/s Ratio Perm		1017-0-020-0							0.24			0.03
v/c Ratio	0.42	1.15		1.33	0.95		0.38	0.74	0.24	0.29	0.84	0.09
Uniform Delay, d1	58.2	45.5		70.5	50.9		53.5	57.7	0.0	42.3	50.7	25.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	73.6		177.9	14.2		0.3	7.9	0.4	0.1	10.9	0.1
Delay (s)	58.8	119.1		248.4	65.2		53.7	65.6	0.4	42.4	61.6	25.7
Level of Service	E	F		F	E		D	E	А	D	E	C
Approach Delay (s)		114.0			93.9			34.4			49.4	
Approach LOS		F			F			С			D	
Intersection Summary												
HCM Average Control Delay			87.2	H	CM Leve	of Service	-		F			
HCM Volume to Capacity ratio			0.98									
Actuated Cycle Length (s)			150.0	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	harm		91.5%	IC	ULevel	of Service			F			
Analysis Period (min)			15									

HIII Road & Morgan Boulevard Road Diet

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

2035 PM

	٠	-	1	+	*	1	1	1	4	۰Ļ	1
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	89	2168	116	1205	258	88	191	53	327	368	147
v/c Ratio	0.32	0.89	0.54	0.47	0.28	0.55	0.57	0.27	0.82	0.45	0.29
Control Delay	18.8	41.6	36.6	27.4	4.0	76.3	70.5	18.0	69.9	48.6	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.8	41.6	36.6	27.4	4.0	76.3	70.5	18.0	69.9	48.6	7.1
Queue Length 50th (ft)	36	686	56	275	0	92	100	0	335	168	0
Queue Length 95th (ft)	78	#1027	135	402	58	153	140	43	431	204	53
nternal Link Dist (ft)		1835		2003			924			2121	
Turn Bay Length (ft)	300		225		325	350		225	300		150
Base Capacity (vph)	282	2433	213	2538	920	413	868	436	437	907	537
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.89	0.54	0.47	0.28	0.21	0.22	0.12	0.75	0.41	0.27

HIII Road & Morgan Boulevard Road Diet

ntersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

2035 PM

EBL 85 1900 3.0 1.00 1.00	EBT 1960 1900 3.0	EBR 100 1900	WBL	WBT	WBR	NIDI	NIDT				_
85 1900 3.0 1.00	1960 1900 3.0					NBL	NBT	NBR	SBL	SBT	SBR
1900 3.0 1.00	1900 3.0		110	TTT	1	٦	41	1	1	† ₽	1
1900 3.0 1.00	3.0	1900	110	1145	245	95	170	50	420	240	140
3.0 1.00	3.0		1900	1900	1900	1900	1900	1900	1900	1900	1900
1.00			3.0	3.0	3.0	3.0	3.0	4.0	3.0	3.0	3.0
	0.91		1.00	0.91	1.00	0.91	0.91	1.00	0.91	0.91	1.00
	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.98	1.00
1770	5048		1770	5085	1583	1610	3380	1583	1610	3338	1583
											1.00
											1583
		0.95									0.95
				and a second					the second se		147
			A 1.5-								111
							-				36
		0								_	Perm
					renn			1 GIIII	and the second se	1 1 1 1	(enn
	U			2	2	5	5	3	4	4	4
	60.2			71.0		12.0	12.0		34.0	34.0	34.0
											37.0
				and the second second				and the second second			0.25
											6.0
											2.5
					790			148			390
	CU.43			0.24	0.00	0.05	CU.U6	0.00	CU.20	0.11	0.00
	0.00		and the second se	0.47		0.55	0.57		0.00	0.45	0.02
										and the second second	0.09
											43.6
											1.00
											0.1
						and the second second					43.6
В			D		C	E		E	E		D
	D			C			E			D	
			H	CM Leve	l of Service	э		D			
		150.0	S	um of los	t time (s)						
		78.8%	IC	ULevel	of Service			D			
		15									
	0.16 304 0.95 89 0 89 0 78.3 82.3 0.55 5.0 3.0 275 0.02 0.15 0.32 17.6 1.00 0.7 18.3 B	0.16 1.00 304 5048 0.95 0.95 89 2063 0 3 89 2165 m+pt NA 1 6 6 78.3 78.3 69.2 82.3 72.2 0.55 0.48 5.0 6.0 3.0 5.0 0.275 2430 0.02 c0.43 0.15 0.32 0.32 0.89 17.6 35.3 1.00 1.00 0.7 5.4 18.3 40.8	0.16 1.00 304 5048 0.95 0.95 0.95 89 2063 105 0 3 0 89 2165 0 m+pt NA 1 6 6 78.3 69.2 82.3 72.2 0.55 0.48 5.0 6.0 3.0 5.0 275 2430 0.02 c0.43 0.15 0.32 0.89 17.6 35.3 1.00 1.00 0.7 5.4 18.3 40.8 B D 39.9 D 39.5 0.82 150.0 78.8%	0.16 1.00 0.05 304 5048 101 0.95 0.95 0.95 0.95 89 2063 105 116 0 3 0 0 89 2165 0 116 m+pt NA pm+pt 1 6 5 6 2 78.3 69.2 83.7 82.3 72.2 87.7 0.55 0.48 0.58 5.0 6.0 5.0 3.0 5.0 3.0 275 2430 213 0.02 c0.43 c0.5 0.15 0.27 0.32 0.89 0.54 17.6 35.3 33.6 1.00 1.00 1.00 0.7 5.4 2.8 18.3 40.8 36.5 B D D D 39.9 D C 	0.16 1.00 0.05 1.00 304 5048 101 5085 0.95 0.95 0.95 0.95 89 2063 105 116 1205 0 3 0 0 0 0 89 2165 0 116 1205 0 3 0 0 0 0 89 2165 0 116 1205 m+pt NA pm+pt NA 1 6 5 2 6 2 78.3 69.2 83.7 71.9 82.3 72.2 87.7 74.9 0.55 0.48 0.58 0.50 5.0 6.0 5.0 6.0 30 5.0 6.0 3.0 5.0 2.13 2539 0.27 0.24 0.15 0.27 0.32 0.89 0.54 0.47 17.6 35.3 33.6 24.6	0.16 1.00 0.05 1.00 1.00 304 5048 101 5085 1583 0.95 0.95 0.95 0.95 0.95 0.95 89 2063 105 116 1205 258 0 3 0 0 0 129 89 2165 0 116 1205 129 m+pt NA pm+pt NA Perm 1 6 5 2 2 6 2 2 2 2 78.3 69.2 83.7 71.9 71.9 82.3 72.2 87.7 74.9 74.9 0.55 0.48 0.58 0.50 0.50 5.0 6.0 5.0 6.0 6.0 3.0 5.0 6.0 5.0 6.0 3.0 5.0 0.27 0.08 0.32 0.32 0.89 0.54 0.47	0.16 1.00 0.05 1.00 1.00 0.95 304 5048 101 5085 1583 1610 0.95 0.95 0.95 0.95 0.95 0.95 0.95 89 2063 105 116 1205 258 100 0 3 0 0 0 129 0 89 2165 0 116 1205 129 88 m+pt NA pm+pt NA Perm Split 1 6 5 2 3 6 2 2 7 78.3 69.2 83.7 71.9 71.9 12.0 83.7 71.9 71.9 12.0 83.7 71.9 71.9 12.0 83.3 72.2 87.7 74.9 74.9 15.0 0.50 0.10 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 3.0 5.0 2.5 2.75 2430 213 </td <td>0.16 1.00 0.05 1.00 1.00 0.95 1.00 304 5048 101 5085 1583 1610 3380 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 89 2063 105 116 1205 258 100 179 0 3 0 0 0 129 0 0 89 2165 0 116 1205 129 88 191 m+pt NA pm+pt NA Perm Split NA 1 6 5 2 3 3 6 2 2 7 78.3 69.2 83.7 71.9 71.9 12.0 12.0 12.0 82.3 72.2 87.7 74.9 74.9 15.0 15.0 0.55 0.48 0.58 0.50 0.10 0.10 0.10 0.02 <</td> <td>0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 304 5048 101 5085 1583 1610 3380 1583 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 89 2063 105 116 1205 258 100 179 53 0 3 0 0 0 129 0 0 48 89 2165 0 116 1205 129 88 191 5 m+pt NA pm+pt NA Perm Split NA Perm 1 6 5 2 3 3 - - - 3 6 2 2 3 3 - - 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0</td> <td>0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 0.95 304 5048 101 5085 1583 1610 3380 1583 1610 0.95<td>0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 0.95 <td< td=""></td<></td></td>	0.16 1.00 0.05 1.00 1.00 0.95 1.00 304 5048 101 5085 1583 1610 3380 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 89 2063 105 116 1205 258 100 179 0 3 0 0 0 129 0 0 89 2165 0 116 1205 129 88 191 m+pt NA pm+pt NA Perm Split NA 1 6 5 2 3 3 6 2 2 7 78.3 69.2 83.7 71.9 71.9 12.0 12.0 12.0 82.3 72.2 87.7 74.9 74.9 15.0 15.0 0.55 0.48 0.58 0.50 0.10 0.10 0.10 0.02 <	0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 304 5048 101 5085 1583 1610 3380 1583 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 89 2063 105 116 1205 258 100 179 53 0 3 0 0 0 129 0 0 48 89 2165 0 116 1205 129 88 191 5 m+pt NA pm+pt NA Perm Split NA Perm 1 6 5 2 3 3 - - - 3 6 2 2 3 3 - - 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 0.95 304 5048 101 5085 1583 1610 3380 1583 1610 0.95 <td>0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 0.95 <td< td=""></td<></td>	0.16 1.00 0.05 1.00 1.00 0.95 1.00 1.00 0.95 <td< td=""></td<>

HIII Road & Morgan Boulevard Road Diet

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

HIII Road & Morgan Boulevard Road Diet

2035 PM

	-+	7	+	*	1	1	+	1	
Lane Group	EBT	EBR	WBT	WBR	NBT	NBR	SBT	SBR	
Lane Group Flow (vph)	10	42	206	105	421	116	621	11	
v/c Ratio	0.03	0.11	0.69	0.24	0.36	0.11	0.57	0.01	
Control Delay	16.7	7.1	33.2	6.0	6.6	1.5	9.2	2.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.7	7.1	33.2	6.0	6.6	1.5	9.2	2.9	
Queue Length 50th (ft)	3	0	64	0	60	0	108	0	
Queue Length 95th (ft)	12	20	124	30	117	15	212	5	
Internal Link Dist (ft)	480		402		2121		554		
Turn Bay Length (ft)								100	
Base Capacity (vph)	437	454	364	500	1163	1065	1093	1027	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.09	0.57	0.21	0.36	0.11	0.57	0.01	

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

2035 PM

	٠	-+	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	-	र्भ	1		4	۴		4	1	_	र्भ	1
Volume (vph)	5	5	40	185	10	100	20	380	110	75	515	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Lane Util. Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Frt		1.00	0.85		1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected		0.98	1.00		0.95	1.00		1.00	1.00		0.99	1.00
Satd. Flow (prot)		1817	1583		1779	1583		1858	1583		1851	1583
Flt Permitted		0.88	1.00		0.73	1.00		0.97	1.00		0.91	1.00
Satd. Flow (perm)		1635	1583		1361	1583		1800	1583		1689	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	5	5	42	195	11	105	21	400	116	79	542	11
RTOR Reduction (vph)	0	0	33	0	0	82	0	0	41	0	0	4
Lane Group Flow (vph)	0	10	9	0	206	23	0	421	75	0	621	7
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1 0.111	4	1 onin	1 onn	8	1 onn	1 Gilli	2	4 onn	1 onn	6	(on
Permitted Phases	4		4	8		8	2	-	2	6		6
Actuated Green, G (s)		13.2	13.2		13.2	13.2	-	38.9	38.9		38.9	38.9
Effective Green, g (s)		13.2	13.2		13.2	13.2		38.9	38.9		38.9	38.9
Actuated g/C Ratio		0.22	0.22		0.22	0.22		0.65	0.65		0.65	0.65
Clearance Time (s)		4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)		359	348		299	348		1165	1025		1093	1025
v/s Ratio Prot			010		200			1100	1020		1000	1020
v/s Ratio Perm		0.01	0.01		c0.15	0.01		0.23	0.05		c0.37	0.00
v/c Ratio		0.03	0.03		0.69	0.07		0.36	0.07		0.57	0.01
Uniform Delay, d1		18.4	18.4		21.6	18.6		4.9	3.9		5.9	3.8
Progression Factor		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2		0.0	0.0		6.5	0.1		0.9	0.1		2.1	0.0
Delay (s)		18.4	18.4		28.0	18.7		5.8	4.1		8.1	3.8
Level of Service		В	В		С	В		A	А		A	A
Approach Delay (s)		18.4			24.9			5.4			8.0	
Approach LOS		В			С			А			A	
Intersection Summary												
HCM Average Control Delay			10.9	Ĥ	CM Leve	of Service	е		В			
HCM Volume to Capacity ratio			0.60									
Actuated Cycle Length (s)			60.1	S	um of los	t time (s)			8.0			
Intersection Capacity Utilization	1		79.8%			of Service			D			
Analysis Period (min)			15									

HIII Road & Morgan Boulevard Road Diet

2035_PM_Morgan_Blvd 4:30 pm 5/3/2012 2035_PM_Morgan_Blvd CJD

Appendix 7 Build Scenario #3 Traffic Analysis and Queuing Reports

	٢	-	7	1	*	t	1	
Lane Group	EBL	EBT	EBR	WBL	WBR	NBT	NBR	
Lane Group Flow (vph)	26	126	216	121	37	1304	565	
v/c Ratio	0.19	0.43	0.50	0.45	0.07	0.79	0.48	
Control Delay	17.5	30,6	8.8	32.5	7.3	17.8	2.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.5	30.6	8.8	32.5	7.3	17.8	2.1	
Queue Length 50th (ft)	0	48	0	46	0	203	5	
Queue Length 95th (ft)	23	97	53	99	19	355	37	
Internal Link Dist (ft)		672				788		
Turn Bay Length (ft)								
Base Capacity (vph)	140	489	575	349	646	1918	1215	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.19	0.26	0.38	0.35	0.06	0.68	0.47	

Queues			
260: Harry S. Truman Driv	/e & Largo To	own Center Drive	7/16/
,	→ ¥	< < t /	

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

	٠		~	1	+	4	1	t	1	6	-A	1
Manager 1		FOT	•	*	IAUDT	MDD		^			*	0.00
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT AT>	NBR	SBL	SBT	SBF
Lane Configurations							0				0	,
Volume (vph)	25	120	205	115	0	35	0	1060	715	0	0	(
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		0.91	0.91			
Frt	1.00	1.00	0.85	1.00		0.85		0.98	0.85			
Flt Protected	0.95	1.00	1.00	0.95		1.00		1.00	1.00			
Satd. Flow (prot)	1770	1863	1583	1770		1583		3317	1441			
Flt Permitted	0.95	1.00	1.00	0.95		1.00		1.00	1.00			
Satd. Flow (perm)	1770	1863	1583	1770	_	1583	_	3317	1441			_
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	26	126	216	121	0	37	0	1116	753	0	0	C
RTOR Reduction (vph)	25	0	174	0	0	25	0	17	193	0	0	0
Lane Group Flow (vph)	1	126	42	121	0	12	0	1287	372	0	0	C
Turn Type	Prot	NA	Perm	Prot		custom		NA	pm+ov			
Protected Phases	7	4		3				2	3			
Permitted Phases		_	4			8			2			
Actuated Green, G (s)	1.4	12.6	12.6	9.5		20.7		31.1	40.6			
Effective Green, g (s)	1.4	12.6	12.6	9.5		20.7		31.1	40.6			
Actuated g/C Ratio	0.02	0.19	0.19	0.15		0.32		0.48	0.62			
Clearance Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		3.0	3.0			
Lane Grp Cap (vph)	38	360	306	258		503		1582	986			
v/s Ratio Prot	0.00	c0.07	000	c0.07		000		c0.39	c0.06			
v/s Ratio Perm	0.00	00.01	0.03	00.07		0.01		00.00	0.20			
v/c Ratio	0.01	0.35	0.14	0.47		0.02		0.81	0.38			
Uniform Delay, d1	31.2	22.8	21.8	25.5		15.3		14.6	6.1			
Progression Factor	1.00	1.00	1.00	1.00		1.00		1.00	1.00			
Incremental Delay, d2	0.2	0.6	0.2	1.3		0.0		3.3	0.2			
Delay (s)	31.4	23.3	22.0	26.9		15.3		17.9	6.3			
Level of Service	C	20.0 C	C	C		B		B	A			
Approach Delay (s)	U	23.1	0	v	24.2			14.4	~		0.0	
Approach LOS		23.1 C			24.2 C			B			A	
Intersection Summary				_								-
HCM Average Control Delay			16.4	L.	CMLeve	l of Service			В			
HCM Volume to Capacity ratio			0.61		OW LOVE				D			
Actuated Cycle Length (s)			65.2	C.	um of loo	t time (s)			8.0			
Intersection Capacity Utilization			56.6%			of Service			0.0 B			
			00.0% 15	IC.	o Lever	of Service			В			
Analysis Period (min) c Critical Lane Group			10									

HCM Signalized Intersection Capacity Analysis

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

1	1	+	*	+	1	1	
			1	1			
Lane Group	WBL	WBT	NBL	NBT	SBT	SBR	
ane Group Flow (vph)	42	1121	5	105	163	326	
/c Ratio	0.05	0.66	0.01	0.17	0.14	0.49	
Control Delay	8.7	8.3	13.0	13.7	12.9	8.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	8.7	8.3	13.0	13.7	12.9	8.1	
Queue Length 50th (ft)	6	58	1	19	15	19	
Queue Length 95th (ft)	24	160	8	60	42	88	
nternal Link Dist (ft)		887		758	736		
furn Bay Length (ft)						150	
Base Capacity (vph)	1335	2579	846	1303	2476	1173	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.43	0.01	0.08	0.07	0.28	

Queues 270: Lottsford Road & Harry S. Truman Drive

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNE OWNE OWNE OWNE	٠	+	~	1	t	*	•	t	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations				1	↑ ₽		۲	+			11	1
Volume (vph)	0	0	0	40	530	535	5	100	0	0	155	310
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)			1000	5.0	5.0	10.00	5.0	5.0			5.0	5.0
Lane Util. Factor				1.00	0.95		1.00	1.00			0.95	1.00
Frt				1.00	0.92		1.00	1.00			1.00	0.85
Fit Protected				0.95	1.00		0.95	1.00			1.00	1.00
Satd. Flow (prot)				1770	3273		1770	1863			3539	1583
Flt Permitted				0.95	1.00		0.65	1.00			1.00	1.00
Satd. Flow (perm)				1770	3273		1208	1863			3539	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	0.00	0	42	558	563	5	105	0.00	0	163	326
RTOR Reduction (vph)	Ő	Ő	0	0	243	0	0	0	Ő	0	0	145
Lane Group Flow (vph)	0	0	0	42	878	Ő	5	105	0	0	163	181
Turn Type	0		0	Split	NA	v	Perm	NA		<u> </u>	NA	Perm
Protected Phases				3	3		1 GIIII	4			2	(GIII
Permitted Phases				5	5		4	-			2	2
Actuated Green, G (s)				21.4	21.4		15.8	15.8			15.8	15.8
Effective Green, g (s)				21.4	21.4		15.8	15.8			15.8	15.8
Actuated g/C Ratio				0.45	0.45		0.33	0.33			0.33	0.33
Clearance Time (s)				5.0	5.0		5.0	5.0			5.0	5.0
Vehicle Extension (s)				3.0	3.0		3.0	3.0			6.0	6.0
Lane Grp Cap (vph)	_			803	1484	_	404	624			1185	530
v/s Ratio Prot				0.02	c0.27		404	0.06			0.05	000
v/s Ratio Perm				0.02	00.21		0.00	0.00			0.00	c0.11
v/c Ratio				0.05	0.59		0.01	0.17			0.14	0.34
Uniform Delay, d1				7.2	9.6		10.5	11.1			10.9	11.8
Progression Factor				1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2				0.0	0.6		0.0	0.1			0.2	1.1
Delay (s)				7.2	10.3		10.5	11.2			11.1	12.9
Level of Service				A	B		B	B			В	E
Approach Delay (s)		0.0			10.2			11.2			12.3	
Approach LOS		A			B			В			В	
Intersection Summary										_		
HCM Average Control Delay			10.8	Ĥ	CM Leve	l of Servic	e		В			
HCM Volume to Capacity ratio			0.49									
Actuated Cycle Length (s)			47.2	S	um of los	t time (s)			10.0			
Intersection Capacity Utilization) (The		67.7%	10	U Level	of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 270: Lottsford Road & Harry S. Truman Drive

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

7/16/2012

	٢	-	1	+	1	t	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	341	685	221	448	311	495	58	400	405	
v/c Ratio	0.82	0.80	0.65	0.64	1.78	0.49	0.49	0.91	0.42	
Control Delay	57.1	46.3	50.7	44.5	403.4	36.2	65.9	68.2	7.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	57.1	46.3	50.7	44.5	403.4	36.2	65.9	68.2	7.7	
Queue Length 50th (ft)	251	243	164	163	~337	156	41	280	60	
Queue Length 95th (ft)	#451	#347	256	220	#551	232	89	#504	145	
Internal Link Dist (ft)		719		1095		560		666		
Turn Bay Length (ft)			300		500		200			
Base Capacity (vph)	434	890	434	891	175	1002	143	451	986	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.79	0.77	0.51	0.50	1.78	0.49	0.41	0.89	0.41	
Intersection Summary								-		

Queues 280: Lottsford Road & Arena Drive

mersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

7/16/2012

	٠	-	7	1	+	*	1	1	1	4	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	۲	414		۲	414		۲	† 1>		۲	+	1
Volume (vph)	515	330	130	355	240	40	295	410	60	55	380	385
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		4.0	6.0		4.0	6.0	6.0
Lane Util. Factor	0.91	0.91		0.91	0.91		1.00	0.95		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.99		1.00	0.98		1.00	1.00	0.85
Fit Protected	0.95	0.99		0.95	0.98		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1610	3241		1610	3286		1770	3472		1770	1863	1583
Flt Permitted	0.95	0.99		0.95	0.98		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1610	3241		1610	3286		1770	3472		1770	1863	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	542	347	137	374	253	42	311	432	63	58	400	405
RTOR Reduction (vph)	0	17	0	0	6	0	0	9	0	0	0	114
Lane Group Flow (vph)	341	668	0	221	442	0	311	486	0	58	400	291
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	1	1		2	2		7	4		3	8	1
Permitted Phases		-		-	_							8
Actuated Green, G (s)	28.8	28.8		23.5	23.5		11.0	32.0		6.4	27.4	56.2
Effective Green, g (s)	28.8	28.8		23.5	23.5		11.0	32.0		6.4	27.4	56.2
Actuated g/C Ratio	0.26	0.26		0.21	0.21		0.10	0.28		0.06	0.24	0.50
Clearance Time (s)	6.0	6.0		6.0	6.0		4.0	6.0		4.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.0		2.0	3.0	3.0
Lane Grp Cap (vph)	411	828	-	336	685		173	986		101	453	874
v/s Ratio Prot	c0.21	0.21		c0.14	0.13		c0.18	0.14		0.03	c0.21	0.09
v/s Ratio Perm	00.21	0.21		00.11	0.10		00.10	0.11		0.00	00.21	0.10
v/c Ratio	0.83	0.81		0.66	0.64		1.80	0.49		0.57	0.88	0.33
Uniform Delay, d1	39.6	39.3		40.9	40.8		50.9	33.6		51.8	41.1	17.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	13.0	5.8		4.6	2.1		381.0	0.4		4.8	18.0	0.2
Delay (s)	52.6	45.1		45.5	42.9		431.9	34.0		56.7	59.2	17.2
Level of Service	D	D		D	D		F	C		E	E	B
Approach Delay (s)	-	47.6		-	43.7			187.5		-	39.3	
Approach LOS		D			D			F			D	
2000 0000		2	_		-						-	
Intersection Summary HCM Average Control Dela		_	78.2	- U	CMLove	of Servic	-	_	E	_		
HCM Volume to Capacity ra			0.92	п	CIVI Leve	OI SEIVIC	e		E			
	300		112.7	0	um of los	time (a)			22.0			
Actuated Cycle Length (s)	ation		90.2%			of Service			22.0 E			
Intersection Capacity Utiliza	auon			IC	U Level	DI SEIVICE			E			
Analysis Period (min) c Critical Lane Group			15									

HCM Signalized Intersection Capacity Analysis 280: Lottsford Road & Arena Drive

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

	×	2	~	×	3	~	
ane Group	SET	SER	NWL	NWT	NEL	NER	
ane Group Flow (vph)	868	263	95	974	163	53	
/c Ratio	0.43	0.26	0.36	0.38	0.39	0.13	
Control Delay	14.5	2.7	36.7	6.2	31.1	9.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.5	2.7	36.7	6.2	31.1	9.3	
Queue Length 50th (ft)	141	0	39	94	63	0	
Queue Length 95th (ft)	234	41	96	156	139	29	
nternal Link Dist (ft)	494			472	436		
Turn Bay Length (ft)		150	350				
Base Capacity (vph)	2221	1091	414	2877	636	603	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.39	0.24	0.23	0.34	0.26	0.09	

Queues 290: Shonners Way & Arena Drive

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

Movement Lane Configurations Volume (vph)	OFT		-	×	3	~		
Lane Configurations	SET	SER	NWL	NWT	NEL	NER		1
	^	1	7	† †	۲	1		
volume (von	825	250	90	925	155	50		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.5	5.5	5.0	5.5	5.0	5.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Fit Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	1770	3539	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	1770	3539	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	868	263	95	974	163	53		
RTOR Reduction (vph)	000	127	0	0	0	45		
Lane Group Flow (vph)	868	136	95	974	163	8		
Turn Type	NA	Perm	Prot	NA	NA	custom		
Protected Phases	6	Feim	5	2	INA	custom		
Permitted Phases	0	6	0	2	8	8		
Actuated Green, G (s)	36.1	36.1	7.1	48.2	11.2	11.2		
Effective Green, g (s)	36.1	36.1	7.1	48.2	11.2	11.2		
Actuated g/C Ratio	0.52	0.52	0.10	0.69	0.16	0.16		
Clearance Time (s)	5.5	5.5	5.0	5.5	5.0	5.0		
	6.0	6.0	3.0	6.0	6.0	6.0		
Vehicle Extension (s)								
Lane Grp Cap (vph)	1828	818	180	2440	284	254		
v/s Ratio Prot	c0.25	0.00	0.05	c0.28	0.00			
v/s Ratio Perm	0.17	0.09	0.50	0.40	c0.09	0.01		
v/c Ratio	0.47	0.17	0.53	0.40	0.57	0.03		
Uniform Delay, d1	10.8	8.9	29.8	4.6	27.1	24.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.6	0.3	2.8	0.3	5.5	0.2		
Delay (s)	11.4	9.2	32.6	5.0	32.6	24.9		
Level of Service	В	А	С	A	С	С		
Approach Delay (s)	10.9			7.4	30.7			
Approach LOS	В			A	C			
Intersection Summary								
HCM Average Control Delay			11.1	н	CM Leve	el of Service	В	
HCM Volume to Capacity ra	tio		0.51					
Actuated Cycle Length (s)			69.9	S	um of los	st time (s)	16.0	
Intersection Capacity Utilizat	tion		49.3%	IC	U Level	of Service	A	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 290: Shoppers Way & Arena Drive

2035 AM Largo Town Center 7:30 am 5/3/2012 CJD

	٠	-	7	1	*	t	1	
Lane Group	EBL	EBT	EBR	WBL	WBR	NBT	NBR	
Lane Group Flow (vph)	84	453	1016	284	42	818	361	
v/c Ratio	0.38	0.66	0.93	0.88	0.05	0.86	0.42	
Control Delay	14.0	24.3	21.9	59.5	3.9	34.7	5.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.0	24.3	21.9	59.5	3.9	34.7	5.7	
Queue Length 50th (ft)	0	166	75	132	0	186	32	
Queue Length 95th (ft)	39	262	#428	#271	15	#292	87	
Internal Link Dist (ft)		672				788		
Turn Bay Length (ft)			400					
Base Capacity (vph)	227	764	1122	326	908	1006	863	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	0.59	0.91	0.87	0.05	0.81	0.42	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

	٠	-	>	1	+		1	1	1	4	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	5	+	1	1	mor	1	THE	† ‡	1	ODE	001	ODI
Volume (vph)	80	430	965	270	0	40	0	600	520	0	0	(
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	1000	4.0	1000	4.0	4.0	1000	1000	1000
Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		0.91	0.91			
Frt	1.00	1.00	0.85	1.00		0.85		0.97	0.85			
Fit Protected	0.95	1.00	1.00	0.95		1.00		1.00	1.00			
Satd. Flow (prot)	1770	1863	1583	1770		1583		3275	1441			
Flt Permitted	0.95	1.00	1.00	0.95		1.00		1.00	1.00			
Satd. Flow (perm)	1770	1863	1583	1770		1583		3275	1441			
	0.95		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Peak-hour factor, PHF		0.95										
Adj. Flow (vph)	84	453	1016	284	0	42	0	632	547	0	0	(
RTOR Reduction (vph)	81	0	489	0	0	19	0	34	130	0	0	(
Lane Group Flow (vph)	3	453	527	284	0	23	0	784	231	0	0	(
Turn Type	Prot	NA	Perm	Prot		custom		NA	pm+ov			
Protected Phases	7	4		3		-		2	3			
Permitted Phases	100	-	4			8		-	2			
Actuated Green, G (s)	2.3	28.8	28.8	13.1		39.6		20.0	33.1			
Effective Green, g (s)	2.3	28.8	28.8	13.1		39.6		20.0	33.1			
Actuated g/C Ratio	0.03	0.39	0.39	0.18		0.54		0.27	0.45			
Clearance Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		3.0	3.0			
Lane Grp Cap (vph)	55	726	617	314		848		886	723			
v/s Ratio Prot	0.00	0.24		c0.16				c0.24	0.06			
v/s Ratio Perm			c0.33			0.01			0.10			
v/c Ratio	0.05	0.62	0.85	0.90		0.03		0.88	0.32			
Uniform Delay, d1	34.7	18.2	20.6	29.8		8.1		25.8	13.1			
Progression Factor	1.00	1.00	1.00	1.00		1.00		1.00	1.00			
Incremental Delay, d2	0.4	1.7	11.1	27.7		0.0		10.5	0.3			
Delay (s)	35.1	19.9	31.8	57.5		8.1		36.3	13.4			
Level of Service	D	В	С	E		А		D	В			
Approach Delay (s)		28.5			51.1			29.3			0.0	
Approach LOS		С			D			С			A	
Intersection Summary												
HCM Average Control Delay			31.2	H	CM Leve	l of Service			С			
HCM Volume to Capacity ratio			0.87									
Actuated Cycle Length (s)			73.9	S	um of los	t time (s)			12.0			
Intersection Capacity Utilization	1		81.4%			of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

	1	+	•	t	1	1	
Lane Group	WBL	WBT	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	63	721	21	189	453	221	
v/c Ratio	0.11	0.57	0.05	0.24	0.30	0.27	
Control Delay	12.3	10.2	8.8	9.5	9.2	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.3	10.2	8.8	9.5	9.2	2.6	
Queue Length 50th (ft)	10	43	3	27	34	0	
Queue Length 95th (ft)	38	116	14	75	79	30	
Internal Link Dist (ft)		887		758	736		
Turn Bay Length (ft)						150	
Base Capacity (vph)	1234	2391	811	1650	3135	1428	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.05	0.30	0.03	0.11	0.14	0.15	

Queues 270: Lottsford Road & Harry S. Truman Drive

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

Volume (vph) 0 0 0 60 400 285 20 18 Ideal Flow (vphpl) 1900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 1100 110 1100 1100 1100 100 100 100 100 100 1	t .	1		4	1
Lane Configurations *	BT N	NBR	R SBL	SBT	SBF
Volume (vph) 0 0 0 60 400 285 20 18 Ideal Flow (vphpl) 1900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 100 1100 1100 1100 1100 1100 1100 1100 1100 1100 100 100 <t< td=""><td>+</td><td></td><td></td><td>11</td><td>1</td></t<>	+			11	1
Ideal Flow (vphpl) 1900 <td></td> <td>0</td> <td>) 0</td> <td>430</td> <td>210</td>		0) 0	430	210
Total Lost time (s) 5.0		1900		1900	1900
Lane Util. Factor 1.00 0.95 1.00 1.00 Frt 1.00 0.94 1.00 1.00 Fit 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1770 3318 1770 186 Fit Permitted 0.95 0.00 0.49 1.00 Satd. Flow (perm) 1770 3318 914 186 Peak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 Adj. Flow (vph) 0 0 0 63 421 300 21 18 RTOR Reduction (vph) 0 0 0 63 554 0 21 18 Turn Type Split NA Perm NU Protected Phases 3 3				5.0	5.0
Frt 1.00 0.94 1.00 1.00 Flt Protected 0.95 1.00 0.95 1.00 Satd, Flow (prot) 1770 3318 1770 186 Flt Permitted 0.95 1.00 0.49 1.00 Satd, Flow (perm) 1770 3318 914 186 Peak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 Adj, Flow (vph) 0 0 0 63 421 300 21 18 RTOR Reduction (vph) 0 0 0 63 554 0 21 18 Turn Type Split NA Perm NJ Protected Phases 3 3 - Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated Green, G (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 5.0 5.0 5.0 5.0 5.0 5.0 Ve				0.95	1.00
Fit Protected 0.95 1.00 0.95 1.00 Satd. Flow (port) 1770 3318 1770 186 Fit Permitted 0.95 1.00 0.49 1.00 Satd. Flow (perm) 1770 3318 914 186 Peak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 Adj. Flow (vph) 0 0 0 63 421 300 21 18 RTOR Reduction (vph) 0 0 0 63 554 0 21 18 Turn Type Split NA Perm NJ Protected Phases 3 3				1.00	0.85
Satd. Flow (prot) 1770 3318 1770 186 Flt Permitted 0.95 1.00 0.49 1.00 Satd. Flow (perm) 1770 3318 914 186 Peak-hour factor, PHF 0.95				1.00	1.00
Fit Permitted 0.95 1.00 0.49 1.00 Satd. Flow (perm) 1770 3318 914 186 Peak-hour factor, PHF 0.95				3539	1583
Satd. Flow (perm) 1770 3318 914 186 Peak-hour factor, PHF 0.95 0.19				1.00	1.00
Peak-hour factor, PHF 0.95				3539	1583
Adj. Flow (vph) 0 0 0 63 421 300 21 18 RTOR Reduction (vph) 0 0 0 0 167 0 0 Lane Group Flow (vph) 0 0 0 63 554 0 21 18 Turn Type Split NA Perm NJ Protected Phases 3 3		0.95	5 0.95	0.95	0.95
RTOR Reduction (vph) 0 0 0 0 167 0 0 Lane Group Flow (vph) 0 0 0 0 63 554 0 21 188 Turn Type Split NA Perm NJ Protected Phases 3 3 4 Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated g/C Ratio 0.34 0.34 0.44 0.4 Clearance Time (s) 5.0 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.02 v/c Ratio 0.01 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.2 Progression Factor 1.00 1.00 1.00 1.00		0		453	221
Lane Group Flow (vph) 0 0 0 63 554 0 21 18 Turn Type Split NA Perm NV Protected Phases 3 3	0	Ő		0	125
Turn Type Split NA Perm NA Protected Phases 3 3 4 Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated g/C Ratio 0.34 0.34 0.44 0.4 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Prot 0.04 c0.17 0.1 V/s Ratio Prot 0.01 0.00 1.00 1.00 Inform Delay, d1 10.0 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0		0		453	96
Protected Phases 3 3 4 Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated g/C Ratio 0.34 0.34 0.44 0.4 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Perm 0.02 v/c Ratio 0.11 0.50 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0			, <u>,</u>	NA	Perm
Permitted Phases 4 Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated g/C Ratio 0.34 0.34 0.44 0.4 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.14 v/s Ratio Prot 0.02 0.1 0.50 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.1 Delay (s) 10.1 11.9 7.2 7.3 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.3 Approach LOS	4			2	(one
Actuated Green, G (s) 14.8 14.8 19.1 19. Effective Green, g (s) 14.8 14.8 19.1 19. Actuated g/C Ratio 0.34 0.34 0.44 0.4 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Perm 0.02 0.11 0.50 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.1 Delay (s) 10.1 11.9 7.2 7.3 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.3 Approach LOS A B B A	-			-	2
Effective Green, g (s) 14.8 14.8 19.1 19. Actuated g/C Ratio 0.34 0.34 0.44 0.4 Clearance Time (s) 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Perm 0.02 0.11 0.50 0.05 0.2 Vic Ratio 0.11 0.50 0.05 0.2 0.1 0.00 1.00 <t< td=""><td>1</td><td></td><td></td><td>19.1</td><td>19.1</td></t<>	1			19.1	19.1
Actuated g/C Ratio 0.34 0.34 0.44 0.44 Clearance Time (s) 5.0 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.11 v/s Ratio Perm 0.02 0.11 0.50 0.05 0.2 V/c Ratio 0.11 0.50 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.1 Delay (s) 10.1 11.9 7.2 7.3 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.3 Approach LOS A B A A Intersection Summary 9.8 HCM Level of Ser				19.1	19.1
Clearance Time (s) 5.0				0.44	0.44
Vehicle Extension (s) 3.0 1.0 1.0 1.0 1.0 1.0 1.00 <td></td> <td></td> <td></td> <td>5.0</td> <td>5.0</td>				5.0	5.0
Lane Grp Cap (vph) 597 1119 398 81 v/s Ratio Prot 0.04 c0.17 0.1 v/s Ratio Perm 0.02 0.02 0.02 v/c Ratio 0.11 0.50 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.1 Delay (s) 10.1 11.9 7.2 7.3 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.3 Intersection Summary HCM Average Control Delay 9.8 HCM Level of Service				6.0	6.0
v/s Ratio Prot 0.04 c0.17 0.11 v/s Ratio Perm 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.2 0.04 c0.11 0.50 0.05 0.2 0.11 0.10 1.00				1540	689
v/s Ratio Perm 0.02 v/c Ratio 0.11 0.50 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.0 Delay (s) 10.1 11.9 7.2 7.3 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.3 Approach LOS A B A Intersection Summary 9.8 HCM Level of Service HCM Level of Service				c0.13	000
v/c Ratio 0.11 0.50 0.05 0.2 Uniform Delay, d1 10.0 11.6 7.2 7.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.0 1.00	10			00.10	0.06
Uniform Delay, d1 10.0 11.6 7.2 7.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.3 0.1 0.0 Delay (s) 10.1 11.9 7.2 7.1 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.1 Approach LOS A B A Intersection Summary 9.8 HCM Level of Service	23			0.29	0.14
Progression Factor 1.00 <td></td> <td></td> <td></td> <td>8.0</td> <td>7.5</td>				8.0	7.5
Incremental Delay, d2 0.1 0.3 0.1 0. Delay (s) 10.1 11.9 7.2 7.1 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.1 Approach LOS A B A Intersection Summary 9.8 HCM Level of Service				1.00	1.00
Delay (s) 10.1 11.9 7.2 7.1 Level of Service B B A A Approach Delay (s) 0.0 11.8 7.1 Approach LOS A B B Intersection Summary 9.8 HCM Level of Service				0.3	0.3
Level of Service B B A A Approach Delay (s) 0.0 11.8 7.9 Approach LOS A B A Intersection Summary 9.8 HCM Level of Service				8.3	7.7
Approach Delay (s) 0.0 11.8 7.4 Approach LOS A B 7 Intersection Summary 7 7 7 HCM Average Control Delay 9.8 HCM Level of Service	A			A	A
Approach LOS A B Intersection Summary HCM Average Control Delay 9.8 HCM Level of Service				8.1	
HCM Average Control Delay 9.8 HCM Level of Service	A			A	
					1
HCM Volume to Capacity ratio 0.38		A	1		
Actuated Cycle Length (s) 43.9 Sum of lost time (s)	10	10.0			
Intersection Capacity Utilization 49.9% ICU Level of Service		A	4		
Analysis Period (min) 15 c Critical Lane Group					

HCM Signalized Intersection Capacity Analysis 270: Lottsford Road & Harry S. Truman Drive

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

	٢	-	1	+	1	t	4	+	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	_
Lane Group Flow (vph)	469	1136	76	503	200	779	132	332	595	
v/c Ratio	0.90	1.05	0.24	0.76	1.04	0.92	0.87	0.89	0.63	
Control Delay	63.5	83.4	46.1	57.2	132.3	57.5	105.6	76.1	20.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	63.5	83.4	46.1	57.2	132.3	57.5	105.6	76.1	20.2	
Queue Length 50th (ft)	415	~572	60	221	~184	286	112	273	281	
Queue Length 95th (ft)	#674	#758	110	287	#357	#422	#246	#458	441	
Internal Link Dist (ft)		719		1095		560		666		
Turn Bay Length (ft)			300		500		200			
Base Capacity (vph)	523	1081	374	781	192	871	151	389	938	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.90	1.05	0.20	0.64	1.04	0.89	0.87	0.85	0.63	

Queues 280: Lottsford Road & Arena Drive

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

7/16/2012

	٠	-	7	1	+	*	1	1	1	4	4	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	4T>		٦	414	-	۲	† 1+	-	۲	1	1
Volume (vph)	495	825	205	80	435	35	190	415	325	125	315	565
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		4.0	6.0		4.0	6.0	6.0
Lane Util. Factor	0.91	0.91		0.91	0.91		1.00	0.95		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.99		1.00	0.93		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1610	3286		1610	3350		1770	3306		1770	1863	1583
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1610	3286		1610	3350		1770	3306		1770	1863	1583
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	521	868	216	84	458	37	200	437	342	132	332	595
RTOR Reduction (vph)	0	13	0	0	4	0	0	105	0	0	0	35
Lane Group Flow (vph)	469	1123	0	76	499	0	200	674	0	132	332	560
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	1	1		2	2		7	4		3	8	1
Permitted Phases												8
Actuated Green, G (s)	42.1	42.1		25.3	25.3		14.0	29.0		11.0	26.0	68.1
Effective Green, g (s)	42.1	42.1		25.3	25.3		14.0	29.0		11.0	26.0	68.1
Actuated g/C Ratio	0.33	0.33		0.20	0.20		0.11	0.22		0.09	0.20	0.53
Clearance Time (s)	6.0	6.0		6.0	6.0		4.0	6.0		4.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		2.0	3.0		2.0	3.0	3.0
Lane Grp Cap (vph)	524	1069	_	315	655	_	191	741		150	374	906
v/s Ratio Prot	0.29	c0.34		0.05	c0.15		c0.11	c0.20		0.07	0.18	0.20
v/s Ratio Perm	0.20	00.01		0.00	00.10		00.11	00.20		0.01	0.10	0.15
v/c Ratio	0.90	1.05		0.24	0.76		1.05	0.91		0.88	0.89	0.62
Uniform Delay, d1	41.5	43.7		43.9	49.2		57.7	48.9		58.5	50.3	21.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	17.6	41.6		0.4	5.2		78.1	15.0		39.7	21.6	1.3
Delay (s)	59.1	85.3		44.3	54.4		135.8	64.0		98.3	71.8	22.8
Level of Service	E	F		D	D		F	E		F	E	C
Approach Delay (s)		77.6			53.1			78.6			47.6	
Approach LOS		E			D			E			D	
Intersection Summary				_								1
HCM Average Control Delay			67.0	H	CM Level	of Servic	e		E			
HCM Volume to Capacity ratio			0.96									
Actuated Cycle Length (s)			129.4	S	um of los	t time (s)			22.0			
Intersection Capacity Utilization	1		93.0%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 280: Lottsford Road & Arena Drive

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

Queues

	×	2	~	×	3	~	
Lane Group	SET	SER	NWL	NWT	NEL	NER	
Lane Group Flow (vph)	1258	595	132	1079	279	205	
v/c Ratio	0.74	0.59	0.65	0.46	0.71	0.40	
Control Delay	21.7	6.1	52.8	8.3	42.6	6.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.7	6.1	52.8	8.3	42.6	6.9	
Queue Length 50th (ft)	295	37	72	144	145	0	
Queue Length 95th (ft)	378	121	#142	187	232	54	
Internal Link Dist (ft)	494			472	436		
Turn Bay Length (ft)		150	350				
Base Capacity (vph)	1746	1022	226	2403	432	541	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.58	0.58	0.45	0.65	0.38	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

	×	2	~	×	3	~		
Movement	SET	SER	NWL	NWT	NEL	NER		
Lane Configurations	^	*	٦	^	۲	1		
Volume (vph)	1195	565	125	1025	265	195		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.5	5.5	5.0	5.5	5.0	5.0		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	1770	3539	1770	1583		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	1770	3539	1770	1583		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	1258	595	132	1079	279	205		
RTOR Reduction (vph)	0	246	0	0	0	159		
Lane Group Flow (vph)	1258	349	132	1079	279	46		
Turn Type	NA	Perm	Prot	NA	NA	custom		
Protected Phases	6	1 OIII	5	2	11/1	GUSIOIT		
Permitted Phases	U	6	5	2	8	8		
Actuated Green, G (s)	41.8	41.8	10.0	56.8	19.2	19.2		
Effective Green, g (s)	41.8	41.8	10.0	56.8	19.2	19.2		
Actuated g/C Ratio	0.48	0.48	0.12	0.66	0.22	0.22		
Clearance Time (s)	5.5	5.5	5.0	5.5	5.0	5.0		
Vehicle Extension (s)	6.0	6.0	3.0	6.0	6.0	6.0		
Lane Grp Cap (vph)	1710	765	205	2324	393	351		
v/s Ratio Prot	c0.36	705	c0.07	0.30	393	351		
v/s Ratio Perm	00.30	0.22	0.07	0.50	c0.16	0.03		
	0.74		0.64	0.40		0.03		
v/c Ratio	0.74	0.46	0.64	0.46	0.71			
Uniform Delay, d1	17.9	14.8	36.5	7.3	31.1	27.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	2.3	1.2	6.8 43.3	0.4	8.4 39.5	0.5 27.4		
Delay (s)	20.2	16.0		7.8				
Level of Service	C	В	D	A	D	С		
Approach Delay (s)	18.9			11.6	34.4			
Approach LOS	В			В	С			
Intersection Summary								
HCM Average Control Dela			18.5	н	CM Leve	el of Service	В	
HCM Volume to Capacity ra	atio		0.72					
Actuated Cycle Length (s)			86.5			st time (s)	15.5	
Intersection Capacity Utiliza	ation		67.6%	IC	U Level	of Service	C	
Analysis Period (min)			15					

HCM Signalized Intersection Capacity Analysis 290: Shoppers Way & Arena Drive

2035 PM Largo Town Center 4:30 pm 5/3/2012 CJD

Appendix 8 Traffic Analysis for Davey Street Road Diet

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING / PLANNING

36 S Charles Street, Suite 1920, Baltimore, MD 21201 410.347.9610 410.347.9611

MEMORANDUM

Date:	May 25, 2012	Project #: 11788
To:	Cipriana Thompson	
	Chief, Traffic Design & Planning Section	
	Prince George's County Department of Public Works & Tran	sportation
From:	Zachary Horowitz, PE; Yolanda Takesian, AICP; and Caitlin D	oolin
Project;	M-NCPPC Central Avenue TOD Mobility Study	
Subject:	Davey Street Road Diet	
Start and		

The Maryland National Capital Park and Planning Commission (M-NCPPC) is evaluating transportation enhancement options for Phase III of the Central Avenue Transit Oriented Development (TOD) Mobility Study. Kittelson & Associates, Inc. (KAI) has been scoped to evaluate transportation improvements and options that improve mobility within the Central Avenue (MD 214) corridor.

This memorandum evaluates the traffic impacts of implementing a "road diet" on Davey Street, which would primarily involve reducing Davey Street to one lane in each direction from Central Avenue to Southern Avenue SE. The traffic analysis indicates that a road diet on Davey Street from Central Avenue to Southern Avenue SE would have little impact on traffic operations..

Analysis Methodology and Results

KAI completed an analysis of the AM and PM peak hour traffic volumes on two intersections: East Capitol Street Extended/Davey Street and Davey Street/Capitol Heights Boulevard. The analysis evaluated and compared the operational results of existing conditions and a "road diet" scenario along Davey Street.

The road diet would modify Davey Street approaches at East Capitol Street Extended/Davey Street and Davey Street/Capitol Heights Boulevard to a single lane in each direction. No changes would be made to the geometry on East Capitol Street Extended or Capitol Heights Boulevard.

Traffic volumes were collected in 2011 and 2012 at the two intersections for the AM and PM peak periods. These traffic counts show relatively low traffic volumes along both the eastern and western segments of Davey Streets, with peak-hour bi-directional volumes of just over 500 vehicles on the most heavily traveled portion of Davey Street (west of Capitol Heights Boulevard). Volumes in this

FILENAME: H:\PROJFILE\11788 - MNCPPC CENTRAL AVENUE MOBILITY STUDY\REPORT\DAVEY_ST_ROAD_DIET.DOCX

M-NCPPC Central Avenue TOD Mobility Study	Project #: 11788
May 25, 2012	Page 2

range are considerably lower than typical thresholds for 2-lane streets. The traffic counts used as part of this analysis are attached as an appendix to this memorandum.

Synchro 7 was used to develop the traffic operations model and evaluate operations using procedures from the Highway Capacity Manual (HCM). Synchro 7 incorporates the HCM analysis for unsignalized intersections for operational evaluations. The HCM analysis calculates the delay and Level of Service (LOS) for the stopped approaches of unsignalized intersections. A summary of the LOS and per vehicle delay for the existing conditions and road diet scenario are reported in Table 1.

Table 1 Summary of Intersection Operations for Existing and Road Diet Conditions along Davey Street

	Stol Caultul Dres	Stol Caultol Dariest Exterption//Doursey Street		$p_{\rm ell} \sim 0 \mathrm{sec} / c = - \mathrm{sec} \mathrm{Met}_{\rm ell} \mathrm{sec} \mathrm{sec} \mathrm{sec}$			
	1	UV)s	U) u	Sector and the sector			
Approach LOS		Delay (sec/vehicle)	LOS	Delay (sec/vehicle)			
Northbound	D (E)	26.9 (39.7)	B (C)	14.2 (18,4)			
Southbound	F (F)	51.1 (126.1)	B (C)	12.8 (15.9)			
		fil.ex	(Date)				
Approach	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)			
Northbound	D (F)	29.2 (77.8)	C (C)	15.4 (18.7)			
Southbound	F (F)	51.1 (126.1)	B (C)	13.3 (17.0)			

AM (PM)

⁴For analysis purposes, North Akin Avenue was removed from the intersection in the Synchro model as the HCM unsignalized analysis cannot be performed on intersections with more than four legs. The volume on Akin Avenue in the AM and PM peak hours did not exceed 10 vehicles. Additional vehicles were added to other movements at the intersection to compensate for this adjustment.

Conclusions

The analysis indicates that the southbound approaches at Central Avenue/Davey Street would remain unchanged in the road diet scenario while the northbound approach would degrade from LOS E to LOS F in the PM peak hour. This primary reason for this is the reduction of the northbound approach from two lanes to one. The road diet configuration would trap northbound right-turning vehicles behind the small number of vehicles attempting to turn left onto Central Avenue or cross Central Avenue to continue north on Davey Street.

As the delay for the left-turning or through vehicles on the approach is expected to be high, most drivers would quickly realize that it would be faster to travel out-of-direction to Southern Avenue and then north to access Central Avenue. Alternatively, the northbound approach could be striped with both a right turn lane and a through-left lane, thus eliminating any impact to northbound delay.

The analysis at the intersection of Davey Street/Capitol Heights Boulevard shows that the road diet scenario would very slightly increase per vehicle delay for the northbound and southbound approaches. Based on the results it is unlikely that drivers would be able to perceive the small increase in delay shown from the analysis results.

Overall, given the relatively low volumes on Davey Street, reducing the street cross-section as part of a road diet treatment to a single lane in each direction would have little to no impact on vehicular

Kittelson & Associates, Inc.

Baltimore, Maryland

M-NCPPC Central Avenue TOD Mobility Study	Project #: 11788
May 25, 2012	Page 3

traffic operations. This is particularly true, assuming that the northbound approach to East Capitol Street Extended/Davey Street be striped with two lanes (a through-left and a dedicated right turn lane).

We trust that this memorandum adequately addresses the planning-level operations associated with a road diet on Davey Street. Should you have any questions or concerns, please do not hesitate to contact us at (703) 885-8970.

Kittelson & Associates, Inc.

Baltimore, Maryland

Appendix 9 Costing Details for Short-Term The following costs associated with the short term implementation projects are to be considered as planning level probably costs. A detailed engineering and costing study for each of the projects should be undertaken.

S1: Traffic signal on Central Avenue at entrance to Addition Road Metrorail station

Detailed information and assumptions are not available for this project.

S2: Traffic signal on Central Avenue at Cabin Branch Road

Detailed information and assumptions are not available for this project.

S3: Central High School Sidepath and Campus Entrance Improvements

CTURE WATHER DUCK	LENNI DUPUTATIATIATI	OPINION OF PROBABLE COST	

TERMINAL PROPERTY OF THE OPPOSITE OF THE

item	Quantity	Unit	2012 Unit Cost	Total Cost	Assumptions
Mobilization (10%)	1.00	15	\$29,560.00	\$79,\$60	Alama perint spitzioni di alam 10 an ad ana poli no en rem
Lanthwork, Excavation, Gradins	819 -	CY.	525:00	\$20,250,00	A construction of the second s
Remove Curh & Gutter	190	Ű	\$20.00	\$3,800.00	1
Concorte Sidewalk (5* Thickness)	11,420	58	\$7.50	\$85,650.00	
Curb and Gutter	200	11	570:00	\$14,000.00	
Detectable Warning Materials	48 -	57	530,00	\$1,440,00	Anima and drayer is readed at 1 aroung indicating the web storing or the re-
The moplastic Pavement Marking (all widths up to 24°)	170	LF.	\$3.00	\$510.00	
24" Thermoplastic Pavement Marking	220	16	\$6.50	51,430.00	
Thermoplastic Pavement Marking (Symbol or Test)		IA	\$250.00	51,500.00	
Rapid Flash Beacon Assembly (set of 4)	1	IA	\$25,000.00	\$25,000.00	Chief Staar from the Unit weet three' and Arbits The tangement full general
High School Sign Relocation	1	DA .	\$3,500,00	\$3,500,00	
Utility Pole Relocation	4	EA	\$13,500.00	554,000.00	Col. Non-Friel Eliza and Colomia project.
Lump Sum Items	-			-	
Cunstraction Survey (15%)	1.00	15	\$31,662.00	\$31,662.00	10
Drainage (5%)	1.00	15	\$7,907.00	\$7,907.00	
185 (55)	1.00	15	\$10,554.00	\$10,554.00	
Maintenance of Teaffic (10%)	1.00	15	521,108.00	\$21,108.00	
Additional Utility Adjournments (10%)	1.00	LS-	\$21,108.00	\$21,10R.00	3
			Subtotal	5733.000	

Note This cost estimate is a planning level estimate only.

S5: Corridor-wide Bus Stop Improvements

Detailed information and assumptions are not available for this project.

CENTRAL AVENUE SHORT TERM IMPROVEMENTS OPINION OF PROBABLE COST

İtem	Quantity	Unit	2012 Unit Cost	Total Cost	1
Mobilization (10%)	1.00	15	\$59,690.00	\$59,690.00	A sume percentage taken total sum of all lose items and sump lose terms
Earthwork, Excevation, Grading	550	CY	\$25.00		Assume onto getterstenst/radii reduration area encaval ed tra 3 rats septit, resisce writh 1 rack depth (laude work for sidewrite en call altern included in sidewrafe price) Assume 11 fast hepth exception and 0-5 replacement of fill al brick, transmale.
Remove Curb & Gutter	1,280	LF	\$20.00	\$25,600.00	
Milling	6,500	SY	\$8.00	\$52,000.00	Assume 2' depth removal.
Asphalt	740	TON	\$75.00	\$55,500.00	Assume 7 depth replacement.
Concrete Sidewalk (5" Thickness)	8,250	SF	\$7.50	\$61,875.00	
Aggregate Base	60	CY	\$30.00	\$1,800.00	Assume Q.S.Teet depth undernest! brick crosswalks
Brick Paving	2,750	SF	\$15.00	\$41,250.00	Assume 10 foot wide procewalk were
Curb and Gutter	1,480	LF	\$70.00	\$103,600.00	
Detectable Warning Materials	90	SF	\$30.00	\$2,700.00	Assume desectable warnings are added as all crossings (induding those with existing outbinimps)
Catch Basin Relocation and Pipe Connection	14	EA	\$5,000.00	\$70,000.00	
Thermoplastic Pavement Marking (all widths up to 24°)	5,790	UF	\$3.00	\$17,370.00	Accume crosswalk panallel lines (including brock crosswalk d), and lines for the constant's length for bike time install atom (need easting double yearow centerine).
24° Thermoplastic Pavement Marking	630	LF	\$6.50	\$4,095.00	
Thermoplastic Pavement Marking (Symbol or Text)	19	EA.	\$250.00	\$4,750.00	Bike lane symbol (arrow and bike symbol counted together as one)
Lump Sum Items					
Construction Survey (15%)	1.00	15	\$68,144.00	\$68,144.00	
E&S (5%)	1.00	15	\$22,715.00	\$22,715.00	
Maintenance of Traffic (10%)	1.00	15	\$45,429.00	\$45,429.00	
Utility Adjustments (10%)	1.00	LS	\$45,429.00	\$45,429.00	
			Subtotal	\$695,700	

Total Estimated Cost

\$905,000

Note: This cost estimate is a planning level estimate only.

S7: Corridor-wide Bus Stop Improvements

Detailed information and assumptions are not available for this project.

S8: Watts Branch Trail Connection

CENTRAL AVENUE SHORT TERM IMPROVEMENTS OPINION OF PROBABLE COST

Item	Quantity	Unit	2012 Unit Cost	Total Cost	
Mobilization (10%)	1.00	LS.	\$21,680.00	521,680	Alterna per kilogal Ale 1937 un c'ha harmen. Mirong ann Mirro
Earthwork, Eccavation, Grading	10140	¢Υ	525.00	\$27,000.00	Assumption between any encourant of 2 fraction, and it, replicate with 1 fraction provide much temperatures and a strain provide much temperatures and the strain and temperatures and a replication provide strain temperatures (temperatures and temperatures and t
Remove Curb & Gutter	780	- UF	\$20.00	\$14,000.00	
Eradication of Pavement Marking	3600	LF	\$1.50	55,400.00	
Concrete Sidewalk (5" Thickness)	5,440	SE	\$7,50	\$40,800.00	
Curb and Gutter	620	LF	\$70.00	\$43,400.00	
Detectable Warning Materials	120	51	\$30.00	\$3,600,00	A constant of the second secon
Catch Basin Relocation and Pipe Connection	5	JA .	\$5,000.00	\$25,000.00	
Thormoplastic Pavement Marking (all widths up to 24°)	300	UF	\$3.00	\$900.00	
24" Thennoplastic Pavement Marking	500	11	\$6.50	\$3,250.00	
Seed & Mukh	480	5¥	\$3.00	\$1,440:00	
Lump Sum Items	1	1			
Construction Survey (15%)	1.00	15	\$24,719.00	\$24,719.00	
E&S-(5%)	1.00	15	\$8,740.00	\$8,240.00	
Maintenance of Traffic [10%]	1.00	15	\$15,479.00	\$16,479.00	
Utility Adjustments (10%)	1.00	15	\$16,479.00	\$16,479.00	
			Subtotal	\$252,400	

30% Contingency Total Estimated Cost 575,720 5329,000

Note: This cost estimate is a planning level estimate only.

ACKNOWLEDGEMENTS

The Maryland-National Capital Park and Planning Commission

Prince George's County Planning Department

Fern V. Piret, Ph.D., *Planning Director* Albert G. Dobbins III, AICP, *Deputy Planning Director*

Community Planning

Countywide Planning

Vanessa C. Akins, *Chief, Strategy and Implementation* Robert J. Duffy, AICP, *Planning Supervisor** Tanya Hedgepeth, *Planner Coordinator* William Washburn, *Planner Coordinator* Sonja Ewing, *Planner Coordinator* Eric Foster, *Planning Supervisor* Fred Shaffer, *Planner Coordinator* Tiffany Julien, *Senior Planner** Eric Jenkins, *Senior Planner*

Prince George's County Department of Public Works & Transportation

Dawit A. Abraham Russell J. Carroll Cipriana Thompson

Armen Abrahamian Andre Issayans Victor Weissberg

Prince George's County Parks & Recreation Maryland Department of Transportation

Maryland State Highway Administration

Washington Metropolitan Area Transit Authority

Consultant Team

Kittelson & Associates, Inc. Toole Design Group Rhodeside Harwell, Inc.

*Former Employees

THE MARYLAND-NATIONAL CAPITAL PARK AND PLANNING COMMISSION PRINCE GEORGE'S COUNTY PLANNING DEPARTMENT www.pgplanning.org/pgco